Home
Class 12
MATHS
(1/(2!)+1/(4!)+1/(6!)+ ....oo)/(1+1/(3!)...

`(1/(2!)+1/(4!)+1/(6!)+ ....oo)/(1+1/(3!)+1/(5!)+....oo) `

A

`(e+1)/(e-1)`

B

`(e)/(e-1)`

C

`1/(e-1)`

D

`(e-1)/(e+1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \((1/(2!) + 1/(4!) + 1/(6!) + \ldots) / (1 + 1/(3!) + 1/(5!) + \ldots)\), we will break it down step by step. ### Step 1: Identify the Series The numerator is the series: \[ S_1 = \sum_{n=1}^{\infty} \frac{1}{(2n)!} = \frac{1}{2!} + \frac{1}{4!} + \frac{1}{6!} + \ldots \] The denominator is the series: \[ S_2 = 1 + \sum_{n=1}^{\infty} \frac{1}{(2n+1)!} = 1 + \frac{1}{3!} + \frac{1}{5!} + \ldots \] ### Step 2: Evaluate the Series The series \(S_1\) can be recognized as half of the Taylor series expansion for \(e^x\) evaluated at \(x=1\): \[ S_1 = \frac{1}{2} (e + e^{-1}) = \frac{1}{2} (e + \frac{1}{e}) = \frac{e + \frac{1}{e}}{2} \] The series \(S_2\) can be evaluated as: \[ S_2 = e + \sum_{n=1}^{\infty} \frac{1}{(2n)!} = e + \frac{1}{2}(e + \frac{1}{e}) - 1 = e - 1 + \frac{e + \frac{1}{e}}{2} \] This simplifies to: \[ S_2 = e - 1 + \frac{e + \frac{1}{e}}{2} \] ### Step 3: Simplifying the Expression Now we need to simplify the expression: \[ \frac{S_1}{S_2} = \frac{\frac{e + \frac{1}{e}}{2}}{e - 1 + \frac{e + \frac{1}{e}}{2}} \] ### Step 4: Multiply Numerator and Denominator by 2 To eliminate the fraction in the numerator, we multiply both the numerator and denominator by 2: \[ \frac{e + \frac{1}{e}}{2(e - 1 + \frac{e + \frac{1}{e}}{2})} \] ### Step 5: Simplifying Further The denominator simplifies to: \[ 2(e - 1) + (e + \frac{1}{e}) = 2e - 2 + e + \frac{1}{e} = 3e - 2 + \frac{1}{e} \] Thus, we have: \[ \frac{e + \frac{1}{e}}{3e - 2 + \frac{1}{e}} \] ### Step 6: Final Simplification Now we can factor out common terms: \[ = \frac{e^2 + 1}{3e^2 - 2e + 1} \] ### Final Answer The final answer is: \[ \frac{e + 1}{e - 1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

1/(2!)-1/(3!)+1/(4!) .....oo =

(1/(1!) +1/(2!) +1/(3!) + .....oo) (1/(2!) -1/(3!) +1/(4!)-1/(5!) .....oo)

1+ 1/(2!)+2/(3!)+4/(4!)+ .... oo =

1/(3!) +2/(5!) + (3)/(7!) + .....oo =

If (1+1/(1!)+(1)/(2!)+......oo) (1-(1)/(1!) +1/(2!) -1/(3!) + ......oo)=

(1+x^2/(2!) +x^4 /(4!) + .....oo)^(2) - (x+x^3/(3!) +x^(5)/(5!) + ....oo)^(2) =

(1+3/(1!) +9/(2!) +(27)/(3!) + .....oo) (1+9/(1!) +(81)/(2!)+(729)/(3!)+ .....oo) =

1+3/(1!) +5/(2!) + (7)/(3!) + ......oo=

(1.3)/(1!) +(2.4)/(2!)+(3.5)/(3!) + (4.6)/(4!) + .......oo = .......

1/2+1/4 +1/(8(2)!)+1/(16(3)!)+1/(32(4)!)+ .....oo =