Home
Class 12
MATHS
Cofficient of x^6 in (e^(ix)+e^(-ix))/2 ...

Cofficient of `x^6` in `(e^(ix)+e^(-ix))/2` is

A

`{:(A,B,C,D),(1,4,3,2):}`

B

`{:(A,B,C,D),(4,1,2,3):}`

C

`{:(A,B,C,D),(4,1,3,2):}`

D

`{:(A,B,C,D),(1,4,2,3):}`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The coefficient of x^6 in series of e^(2x) is

Cofficient of x^(4) in the expansion of (1-3x+x^(2))/(e^(x)) is

Let f(x) = (e^(x) - e^(-x))/(2) and if g(f(x)) = x , then g((e^(1002) -1)/(2e^(501))) equals ...........

The inverse of the function f(x)=(e^x-e^(-x))/(e^x+e^(-x))+2 is given by

The maximum value of x^4e^ (-x^2) is (A) e^2 (B) e^(-2) (C) 12 e^(-2) (D) 4e^(-2)

Differentiate (e^(2x)+e^(-2x))/(e^(2x)-e^(-2x)) with respect to 'x'

int(e^x)/((1+e^x)(2+e^x))dx

int_(0)^(1)e^(2x)e^(e^(x) dx =)

If x is the root of the equation x^(2) -ix -1 =0 , then The value of x^(20) + 1/x^(20) may be

If x is the root of the equation x^(2) -ix -1 =0 , then x^(2013) - 1/x^(2013) may be