Home
Class 12
MATHS
1/(3!) +2/(5!) + (3)/(7!) + .....oo =...

`1/(3!) +2/(5!) + (3)/(7!) + .....oo` =

A

`e/2`

B

`1/(2e)`

C

`3/(2e)`

D

`1/e`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the series \( S = \frac{1}{3!} + \frac{2}{5!} + \frac{3}{7!} + \ldots \) up to infinity, we will follow these steps: ### Step 1: Rewrite the Series We start by rewriting the series in a more manageable form: \[ S = \sum_{n=1}^{\infty} \frac{n}{(2n + 1)!} \] This represents the series where \( n \) takes values starting from 1 and goes to infinity. ### Step 2: Factor Out a Constant To simplify our calculations, we can factor out a constant. We multiply and divide the series by 2: \[ S = \frac{1}{2} \sum_{n=1}^{\infty} \frac{2n}{(2n + 1)!} \] ### Step 3: Rewrite Each Term Next, we rewrite each term in the series: \[ \frac{2n}{(2n + 1)!} = \frac{(2n + 1) - 1}{(2n + 1)!} = \frac{2n + 1}{(2n + 1)!} - \frac{1}{(2n + 1)!} \] This allows us to break the series into two separate sums: \[ S = \frac{1}{2} \left( \sum_{n=1}^{\infty} \frac{1}{(2n)!} - \sum_{n=1}^{\infty} \frac{1}{(2n + 1)!} \right) \] ### Step 4: Recognize the Series The first series \( \sum_{n=0}^{\infty} \frac{1}{(2n)!} \) is the Taylor series expansion for \( \cosh(1) \), and the second series \( \sum_{n=0}^{\infty} \frac{1}{(2n + 1)!} \) is the Taylor series expansion for \( \sinh(1) \): \[ \sum_{n=0}^{\infty} \frac{1}{(2n)!} = \cosh(1), \quad \sum_{n=0}^{\infty} \frac{1}{(2n + 1)!} = \sinh(1) \] ### Step 5: Combine the Results Thus, we can express our series \( S \) as: \[ S = \frac{1}{2} \left( \cosh(1) - \sinh(1) \right) \] ### Step 6: Simplify Further Using the definitions of hyperbolic functions, we know that: \[ \cosh(1) - \sinh(1) = e^{-1} \] Therefore, we have: \[ S = \frac{1}{2} e^{-1} \] ### Final Result Thus, the value of the series is: \[ S = \frac{1}{2e} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

1+3/(1!) +5/(2!) + (7)/(3!) + ......oo=

1/(2!)-1/(3!)+1/(4!) .....oo =

(1+3/(1!) +9/(2!) +(27)/(3!) + .....oo) (1+9/(1!) +(81)/(2!)+(729)/(3!)+ .....oo) =

(1.3)/(1!) +(2.4)/(2!)+(3.5)/(3!) + (4.6)/(4!) + .......oo = .......

x +(x^2)/(3!)+(x^3)/(5!) + ......oo =

If (1+1/(1!)+(1)/(2!)+......oo) (1-(1)/(1!) +1/(2!) -1/(3!) + ......oo)=

1 + (1+2)/(2!) + (1+2+3)/(3!) + (1+2+3+4)/(4!) + ......oo

(1/(1!) +1/(2!) +1/(3!) + .....oo) (1/(2!) -1/(3!) +1/(4!)-1/(5!) .....oo)

If x = (1)/(1.2) + (1)/(3.4) + (1)/(5.6) …….oo, and y = 1 - (1)/(2.3) - (1)/(4.5) - (1)/(6.7)…….oo , then

The sum of series 2/(3!)+4/(5!)+6/(7!)+...........oo is :