Home
Class 12
MATHS
1+3/(1!) +5/(2!) + (7)/(3!) + ......oo=...

`1+3/(1!) +5/(2!) + (7)/(3!) + ......oo=`

A

e

B

`2e`

C

3 e

D

4e

Text Solution

AI Generated Solution

The correct Answer is:
To solve the series \( S = 1 + \frac{3}{1!} + \frac{5}{2!} + \frac{7}{3!} + \ldots \), we can follow these steps: ### Step 1: Rewrite the series We can observe that the series can be rewritten by separating the terms in the numerator: \[ S = 1 + \left(2 + 1\right) \frac{1}{1!} + \left(4 + 1\right) \frac{1}{2!} + \left(6 + 1\right) \frac{1}{3!} + \ldots \] This gives us: \[ S = 1 + \frac{2}{1!} + \frac{4}{2!} + \frac{6}{3!} + \ldots + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \ldots \] ### Step 2: Separate the series Now we can separate the series into two parts: \[ S = \left(1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \ldots\right) + \left(\frac{2}{1!} + \frac{4}{2!} + \frac{6}{3!} + \ldots\right) \] ### Step 3: Identify the first series The first series is the expansion of \( e^x \) at \( x = 1 \): \[ 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \ldots = e \] ### Step 4: Identify the second series The second series can be factored: \[ \frac{2}{1!} + \frac{4}{2!} + \frac{6}{3!} + \ldots = 2\left(\frac{1}{1!} + \frac{2}{2!} + \frac{3}{3!} + \ldots\right) \] The series inside the parentheses is known to be \( e \) as well: \[ \frac{1}{1!} + \frac{2}{2!} + \frac{3}{3!} + \ldots = e \] Thus, we have: \[ \frac{2}{1!} + \frac{4}{2!} + \frac{6}{3!} + \ldots = 2e \] ### Step 5: Combine the results Now we can combine both parts: \[ S = e + 2e = 3e \] ### Final Answer Thus, the value of the series is: \[ S = 3e \]
Promotional Banner

Similar Questions

Explore conceptually related problems

(1+3/(1!) +9/(2!) +(27)/(3!) + .....oo) (1+9/(1!) +(81)/(2!)+(729)/(3!)+ .....oo) =

1/(3!) +2/(5!) + (3)/(7!) + .....oo =

If (1+1/(1!)+(1)/(2!)+......oo) (1-(1)/(1!) +1/(2!) -1/(3!) + ......oo)=

(1/(1!) +1/(2!) +1/(3!) + .....oo) (1/(2!) -1/(3!) +1/(4!)-1/(5!) .....oo)

1/(2!)-1/(3!)+1/(4!) .....oo =

(1.3)/(1!) +(2.4)/(2!)+(3.5)/(3!) + (4.6)/(4!) + .......oo = .......

1 + (1+2)/(2!) + (1+2+3)/(3!) + (1+2+3+4)/(4!) + ......oo

The sum of the series (2)/(1!) + (4)/(3!) + (6)/(5!) + ……. "to" oo equals

If x = (1)/(1.2) + (1)/(3.4) + (1)/(5.6) …….oo, and y = 1 - (1)/(2.3) - (1)/(4.5) - (1)/(6.7)…….oo , then

1+(log_(e)5)/(1!) +(log_e5)^2/(2!)+(log_e5)^3/(3!)+ .......oo =