Home
Class 12
MATHS
Coefficient of x^(n) in (1-2x)/e^x is...

Coefficient of `x^(n)` in `(1-2x)/e^x` is

A

1) `(1+2n)/(n!)`

B

2) `(-1)^n((1+2n))/(n!)`

C

3) `n((1-2n))/(n!)`

D

4) `(-1)^n((1+4n))/(n!)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the coefficient of \( x^n \) in the expression \( \frac{1 - 2x}{e^x} \), we can follow these steps: ### Step 1: Expand \( e^x \) The exponential function \( e^x \) can be expanded using its Taylor series: \[ e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!} = 1 + \frac{x^1}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots \] ### Step 2: Write \( \frac{1 - 2x}{e^x} \) We can rewrite the expression as: \[ \frac{1 - 2x}{e^x} = (1 - 2x) e^{-x} \] Now, we need to find the series expansion for \( e^{-x} \). ### Step 3: Expand \( e^{-x} \) Using the series expansion for \( e^x \), we can find \( e^{-x} \): \[ e^{-x} = \sum_{k=0}^{\infty} \frac{(-x)^k}{k!} = 1 - \frac{x^1}{1!} + \frac{x^2}{2!} - \frac{x^3}{3!} + \ldots \] ### Step 4: Combine the expansions Now, we can multiply \( (1 - 2x) \) with the series expansion of \( e^{-x} \): \[ (1 - 2x) \left( 1 - \frac{x^1}{1!} + \frac{x^2}{2!} - \frac{x^3}{3!} + \ldots \right) \] ### Step 5: Distribute \( (1 - 2x) \) Distributing \( (1 - 2x) \) gives: \[ 1 - \frac{x^1}{1!} + \frac{x^2}{2!} - \frac{x^3}{3!} - 2x + 2 \cdot \frac{x^2}{1!} - 2 \cdot \frac{x^3}{2!} + \ldots \] Now, we can combine like terms: - The coefficient of \( x^0 \) is \( 1 \). - The coefficient of \( x^1 \) is \( -1 - 2 = -3 \). - The coefficient of \( x^2 \) is \( \frac{1}{2!} + 2 \cdot \frac{1}{1!} = \frac{1}{2} + 2 = \frac{5}{2} \). - The coefficient of \( x^3 \) is \( -\frac{1}{3!} - 2 \cdot \frac{1}{2!} = -\frac{1}{6} - 1 = -\frac{7}{6} \). ### Step 6: Generalize for \( x^n \) The coefficient of \( x^n \) can be generalized as: \[ \text{Coefficient of } x^n = -\frac{1}{n!} + 2 \cdot \frac{1}{(n-1)!} \] This can be simplified to: \[ -\frac{1}{n!} + \frac{2 \cdot n}{n!} = \frac{-1 + 2n}{n!} \] ### Final Answer Thus, the coefficient of \( x^n \) in \( \frac{1 - 2x}{e^x} \) is: \[ \frac{2n - 1}{n!} (-1)^n \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If |x| lt 1 , Coefficient of x^3 in 1/(e^x (1+x)) is

Coefficient of x^n in e^(e^x) is 1/(n!) k then k =

Coefficient of x^(n) in (e^(5x)+e^(x))/(e^(2x)) is .....

Prove that the coefficients of x^n in (1+x)^(2n) is twice the coefficient of x^n in (1+x)^(2n-1)dot

If "log"_(e) (1)/(1 + x + x^(2) + x^(3)) be expemnded in asecending power of x , show that the coefficient of x^(n) is - (1)/(n) if n is odd or of the form 4m + 2 and (3)/(n) if n is of the form 4m

Coefficient of x^(n) in log_(e )(1+(x)/(2)) is

The coefficient of x^(n) in (x+1)/((x-1)^(2)(x-2)) is

The coefficient of x^(n) in (1+x)^(101) (1-x+x^(2))^(100) is

Statement 1: The coefficient of x^n in (1+x+(x^2)/(2!)+(x^3)/(3!)++(x^n)/(n !))^3 is (3^n)/(n !) . Statement 2: The coefficient of x^n in e^(3x) is (3^n)/(n !)

If n is odd natural number , then coefficient of x^n in (e^(5x)+e^x)/(e^(3x)) is