Home
Class 12
MATHS
Coefficient of x^(n) in (e^(5x)+e^(x))/...

Coefficient of `x^(n)` in `(e^(5x)+e^(x))/(e^(2x))` is .....

A

1) `1/(n!) (3^(n) +1)`

B

2) `(3^n+5^n)/(n!)`

C

3) `(3^n+(-1)^n)/(n!)`

D

4) `1/(n!)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the coefficient of \( x^n \) in the expression \( \frac{e^{5x} + e^x}{e^{2x}} \), we can follow these steps: ### Step 1: Simplify the Expression We start by simplifying the given expression: \[ \frac{e^{5x} + e^x}{e^{2x}} = \frac{e^{5x}}{e^{2x}} + \frac{e^x}{e^{2x}} = e^{5x - 2x} + e^{x - 2x} = e^{3x} + e^{-x} \] ### Step 2: Expand the Exponential Functions Next, we will expand \( e^{3x} \) and \( e^{-x} \) using their Taylor series expansions. The Taylor series expansion for \( e^x \) is: \[ e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!} \] Thus, for \( e^{3x} \): \[ e^{3x} = \sum_{k=0}^{\infty} \frac{(3x)^k}{k!} = \sum_{k=0}^{\infty} \frac{3^k x^k}{k!} \] And for \( e^{-x} \): \[ e^{-x} = \sum_{k=0}^{\infty} \frac{(-x)^k}{k!} = \sum_{k=0}^{\infty} \frac{(-1)^k x^k}{k!} \] ### Step 3: Combine the Series Now, we combine the two series: \[ e^{3x} + e^{-x} = \sum_{k=0}^{\infty} \frac{3^k x^k}{k!} + \sum_{k=0}^{\infty} \frac{(-1)^k x^k}{k!} \] ### Step 4: Find the Coefficient of \( x^n \) To find the coefficient of \( x^n \), we can look at the combined series: \[ \sum_{k=0}^{\infty} \left( \frac{3^k + (-1)^k}{k!} \right) x^k \] The coefficient of \( x^n \) in this series is: \[ \frac{3^n + (-1)^n}{n!} \] ### Final Answer Thus, the coefficient of \( x^n \) in the expression \( \frac{e^{5x} + e^x}{e^{2x}} \) is: \[ \frac{3^n + (-1)^n}{n!} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If n is odd natural number , then coefficient of x^n in (e^(5x)+e^x)/(e^(3x)) is

Coefficient of x^(10) in e^(3x) is

Coefficient of x^(n) in (1-2x)/e^x is

e^(5x)+e^(-5x)=

Coefficient of x^(n) in log_(e )(1+(x)/(2)) is

Coefficient of x^(10) in the expansion of (2+3x)e^(-x) is

The coeffiecient of x^n in the expansion of (e^(7x) +e^x)/(e^(3x)) is

Coefficient of x^n in e^(e^x) is 1/(n!) k then k =

The coefficient of x^(n) in the expansion of e^(x) is

The coefficient of x^(n) in the expansion of (a+bx+cx^(2))/(e^(x)) is