Home
Class 12
MATHS
(1+x^2/(2!)+x^4/(4!)+....oo)^2 =...

`(1+x^2/(2!)+x^4/(4!)+....oo)^2` =

A

`1+(2x^2)/(2!)+(2^3x^4)/(4!)+(2^5x^6)/(6!)+....oo`

B

`1+(2x^2)/(2!)+(2^2x^4)/(4!)+(2^3x^6)/(6!)+....oo`

C

`1+(x^2)/(1!)+(2x^2)/(2!)+(3x^3)/(3!)+....oo`

D

`(e^(2x) +e^(-2x)+2)/4`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

1+(omega^2x)/(1!)+(omegax^2)/(2!)+(x^3)/(3!) + (omega^2x^4)/(4!) +(omegax^5)/(5!) +(x^6)/(6!) + .... oo =

Cofficient of x^4 in 1+(1+x+x^2)/(1!) +((1+x+x^2)^2)/(2!) +((1+x+x^2)^3)/(3!) + ....oo =

If y= 1+ x + (x^2)/( 2!) + (x^3)/( 3!) + (x^4)/(4!) +…. to oo , show that (dy)/( dx) = y .

If x-x^2/2+x^3/3+x^4/4+..... to oo=y , then y+y^2/(2!)+y^3/(3!)+.... + to oo is equal to

1+(omegax)/(1!) +(omega^2x^2)/(2!)+(omega^3x^3)/(3!)+(omega^4x^4)/(4!)+(omega^5x^5)/(5!)+ .....oo =

If x =3 + (4)/(2!) + (8)/(3!) + (16)/(4!) + .....oo then 1/x =

If (e^(x) -1)^(2) =a_0 +a_(1)x +a_(2) x^2 + ......oo then a_4 =

Show that X^((1)/(2))*X^((1)/(4))*X^((1)/(8)) ... Upto oo = X

If f(x)=(x^(2))/(1.2)-(x^(3))/(2.3)+(x^(4))/(3.4)-(x^(5))/(4.5)+..oo then

if |x| oo)(1+x)(1+x^2)(1+x^4)........(1+x^(2n))=