Home
Class 12
MATHS
1 +(2^3)/(1!) x + (3^3)/(2!) x^2 + ....o...

`1 +(2^3)/(1!) x + (3^3)/(2!) x^2 + ....oo` =

A

`(x^3+6x^(2) -7x -1)e^(x)`

B

`(x^3+6x^(2) +7x +1)e^(x)`

C

`(x^3+7x^(2) -6x +1)e^(x)`

D

`(x^3+x^(2) -2x -1)e^(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the series \( S = 1 + \frac{2^3}{1!} x + \frac{3^3}{2!} x^2 + \ldots \), we need to identify the general term and express the series in a more manageable form. ### Step-by-Step Solution: 1. **Identify the General Term**: The series can be expressed as: \[ S = \sum_{n=0}^{\infty} \frac{(n+1)^3}{n!} x^n \] Here, the general term is \( \frac{(n+1)^3}{n!} x^n \). 2. **Expand the Cubic Term**: We can expand \( (n+1)^3 \) using the binomial theorem: \[ (n+1)^3 = n^3 + 3n^2 + 3n + 1 \] Thus, we can rewrite the series: \[ S = \sum_{n=0}^{\infty} \frac{n^3}{n!} x^n + 3\sum_{n=0}^{\infty} \frac{n^2}{n!} x^n + 3\sum_{n=0}^{\infty} \frac{n}{n!} x^n + \sum_{n=0}^{\infty} \frac{1}{n!} x^n \] 3. **Recognize Standard Series**: The series \( \sum_{n=0}^{\infty} \frac{1}{n!} x^n \) is the Taylor series for \( e^x \). We will also need the derivatives of this series: - \( \sum_{n=0}^{\infty} \frac{n}{n!} x^n = x e^x \) - \( \sum_{n=0}^{\infty} \frac{n^2}{n!} x^n = x \frac{d}{dx}(e^x) = x e^x + e^x = (x+1)e^x \) - \( \sum_{n=0}^{\infty} \frac{n^3}{n!} x^n = x \frac{d}{dx}((x+1)e^x) = x(e^x + (x+1)e^x) = (x^2 + 3x + 1)e^x \) 4. **Combine the Results**: Now substituting these results back into our expression for \( S \): \[ S = (x^2 + 3x + 1)e^x + 3(x + 1)e^x + 3xe^x + e^x \] Simplifying this gives: \[ S = (x^2 + 3x + 1 + 3x + 3 + 3x + 1)e^x = (x^2 + 9x + 5)e^x \] 5. **Final Result**: Thus, the final result for the series is: \[ S = (x^2 + 9x + 5)e^x \]
Promotional Banner

Similar Questions

Explore conceptually related problems

(1+x^2/(2!) +x^4 /(4!) + .....oo)^(2) - (x+x^3/(3!) +x^(5)/(5!) + ....oo)^(2) =

Cofficient of x^4 in 1+(1+x+x^2)/(1!) +((1+x+x^2)^2)/(2!) +((1+x+x^2)^3)/(3!) + ....oo =

(1+3/(1!) +9/(2!) +(27)/(3!) + .....oo) (1+9/(1!) +(81)/(2!)+(729)/(3!)+ .....oo) =

If x^(2)y = 2x - y and |x| lt 1 , then (( y + (y^(3))/(3) + (y^(5))/(5) + ….oo))/((x + (x^(3))/(3) + (x^(5))/(5) + ……oo)) =

Evaluate lim _( x to oo) ((1^(2) )/(n ^(3) +1 ^(3))+(2 ^(2))/(n ^(3) +2 ^(3)) + (3 ^(2))/(n ^(3)+ 3 ^(3))+ .... + (4)/(9n)).

The series . (2x)/(x + 3) + ((2x)/(x + 3))^(2) + ((2x)/(x + 3))^(3) + ...oo have a definite sum when

If y=x+(x^(2))/(2)+(x^(3))/(3)+....oo , then x =

(1/(1!) +1/(2!) +1/(3!) + .....oo) (1/(2!) -1/(3!) +1/(4!)-1/(5!) .....oo)

Let tan^(-1)y=tan^(-1)x+tan^(-1)((2x)/(1-x^2)) , where |x|<1/(sqrt(3)) . Then a value of y is : (1) (3x-x^3)/(1-3x^2) (2) (3x+x^3)/(1-3x^2) (3) (3x-x^3)/(1+3x^2) (4) (3x+x^3)/(1+3x^2)

1+(omegax)/(1!) +(omega^2x^2)/(2!)+(omega^3x^3)/(3!)+(omega^4x^4)/(4!)+(omega^5x^5)/(5!)+ .....oo =