Home
Class 12
MATHS
""^(m)C(r+1)+ sum(k=m)^(n)""^(k)C(r) is ...

`""^(m)C_(r+1)+ sum_(k=m)^(n)""^(k)C_(r)` is equal to :

A

`""^(n)C_(r+1)`

B

`""^(n +1)C_(r +1)`

C

`""^(n)C_(r-1)`

D

`""^(n)C_(r-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \binom{m}{r+1} + \sum_{k=m}^{n} \binom{k}{r} \), we will use the Hockey Stick Identity (or Christmas Stocking Theorem) in combinatorics. ### Step-by-step Solution: 1. **Identify the components of the expression**: We have two parts in the expression: - The first part is \( \binom{m}{r+1} \). - The second part is the summation \( \sum_{k=m}^{n} \binom{k}{r} \). 2. **Apply the Hockey Stick Identity**: The Hockey Stick Identity states that: \[ \sum_{j=r}^{n} \binom{j}{r} = \binom{n+1}{r+1} \] In our case, we need to adjust the limits of the summation. We can rewrite the summation as: \[ \sum_{k=m}^{n} \binom{k}{r} = \sum_{j=m}^{n} \binom{j}{r} \] 3. **Separate the summation**: We can express the summation from \( m \) to \( n \) as: \[ \sum_{k=m}^{n} \binom{k}{r} = \binom{m}{r} + \sum_{k=m+1}^{n} \binom{k}{r} \] 4. **Use the Hockey Stick Identity on the summation**: According to the Hockey Stick Identity, we can express the summation as: \[ \sum_{k=m}^{n} \binom{k}{r} = \binom{n+1}{r+1} \] 5. **Combine the results**: Now we can combine the results: \[ \binom{m}{r+1} + \sum_{k=m}^{n} \binom{k}{r} = \binom{m}{r+1} + \binom{n+1}{r+1} \] 6. **Final result**: The final expression can be simplified further using the Hockey Stick Identity: \[ \binom{m}{r+1} + \binom{n+1}{r+1} = \binom{n+1}{r+1} + \binom{m}{r+1} = \binom{n+m+1}{r+1} \] Thus, the final answer is: \[ \binom{n+1}{r+1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(r=0)^(n)(""^(n)C_(r))/(r+2) is equal to :

sum_(k=m)^n kC_r

sum_(r=0)^(n)((r+2)/(r+1))*""^(n)C_(r) is equal to :

sum_(r=0)^(n)((r+2)/(r+1))*""^(n)C_(r) is equal to :

The vaule of sum_(r=0)^(n-1) (""^(C_(r))/(""^(n)C_(r) + ""^(n)C_(r +1)) is equal to

The sum sum_(r=0)^n (r+1) (C_r)^2 is equal to :

sum_(r=0)^m .^(n+r)C_n is equal to

If n in N, then sum_(r=0)^(n) (-1)^(n) (""^(n)C_(r))/(""^(r+2)C_(r)) is equal to .

The value of sum_(r=0)^(n) sum_(p=0)^(r) ""^(n)C_(r) . ""^(r)C_(p) is equal to

The value of sum_(r=0)^(2n)(-1)^(r)*(""^(2n)C_(r))^(2) is equal to :