Home
Class 12
MATHS
Suppose X ~ B(n,p) and P(X=3) = P(X=5) ....

Suppose `X ~ B(n,p) and P(X=3) = P(X=5)` . If `P gt (1)/(2)`

A

` n le 7`

B

`n gt 8`

C

`n ge 9`

D

`n lt 10`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given information that \( X \) follows a binomial distribution \( X \sim B(n, p) \) and that \( P(X = 3) = P(X = 5) \). We also know that \( p > \frac{1}{2} \). ### Step 1: Write the probability expressions The probability mass function for a binomial distribution is given by: \[ P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} \] Using this, we can write: \[ P(X = 3) = \binom{n}{3} p^3 (1-p)^{n-3} \] \[ P(X = 5) = \binom{n}{5} p^5 (1-p)^{n-5} \] ### Step 2: Set the probabilities equal Since \( P(X = 3) = P(X = 5) \), we have: \[ \binom{n}{3} p^3 (1-p)^{n-3} = \binom{n}{5} p^5 (1-p)^{n-5} \] ### Step 3: Simplify the equation We can rearrange the equation: \[ \frac{\binom{n}{3}}{\binom{n}{5}} = \frac{p^5 (1-p)^{n-5}}{p^3 (1-p)^{n-3}} \] This simplifies to: \[ \frac{\binom{n}{3}}{\binom{n}{5}} = \frac{p^2}{(1-p)^2} \] ### Step 4: Calculate the binomial coefficients The binomial coefficients can be expressed as: \[ \frac{\binom{n}{3}}{\binom{n}{5}} = \frac{n!/(3!(n-3)!)}{n!/(5!(n-5)!)} = \frac{5! (n-5)!}{3! (n-3)!} = \frac{5 \cdot 4}{2 \cdot 1} = 10 \] Thus, we have: \[ 10 = \frac{p^2}{(1-p)^2} \] ### Step 5: Rearranging the equation Cross-multiplying gives: \[ 10(1-p)^2 = p^2 \] Expanding this, we get: \[ 10(1 - 2p + p^2) = p^2 \] \[ 10 - 20p + 10p^2 = p^2 \] \[ 9p^2 - 20p + 10 = 0 \] ### Step 6: Solve the quadratic equation Using the quadratic formula \( p = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ p = \frac{20 \pm \sqrt{(-20)^2 - 4 \cdot 9 \cdot 10}}{2 \cdot 9} \] \[ p = \frac{20 \pm \sqrt{400 - 360}}{18} \] \[ p = \frac{20 \pm \sqrt{40}}{18} \] \[ p = \frac{20 \pm 2\sqrt{10}}{18} \] \[ p = \frac{10 \pm \sqrt{10}}{9} \] ### Step 7: Determine the range for \( n \) Since \( p > \frac{1}{2} \), we need to check which value of \( p \) satisfies this condition. Calculating \( \frac{10 + \sqrt{10}}{9} \) and \( \frac{10 - \sqrt{10}}{9} \): - \( \sqrt{10} \approx 3.16 \) - \( \frac{10 + 3.16}{9} \approx 1.18 \) (not valid since \( p \) must be ≤ 1) - \( \frac{10 - 3.16}{9} \approx 0.76 \) (valid) ### Step 8: Find \( n \) We know that: \[ n - 3 \cdot (n - 4) < 20 \] This gives us: \[ n^2 - 7n + 12 < 20 \] \[ n^2 - 7n - 8 < 0 \] Factoring gives: \[ (n - 8)(n + 1) < 0 \] The solution to this inequality is: \[ -1 < n < 8 \] Thus, \( n \leq 7 \). ### Conclusion The answer is \( n \leq 7 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If P(X) = (3)/( 10) , P(Y) = (2)/(5) and P(X cupY) = (3)/(5) , "then " P((Y)/(X)) + P ((X)/(Y)) equals

For a binomial variate X , if n = 3 and P(X =1) = 12 P(X =3) , then the value of p is

Assertion (A) : X is a binomial distribution with parameters n = 100 and p . If P (x = 50) = P ( x = 49) then p = (1)/(2) Reason (R) : For the binomial distribution (q + p)^n , P (x = k) = ""^(n) c_(k) .q^(n-k) .p^(k)

If X follows Binomial distribution with parameters n=5, p and P(X=2)=9P(X=3), then p is equal to ……. .

For a binomial variate X , if n = 3 and 4P (X=1) = 3P (X=3) , then p (probability of success)

The random variable X can the values 0, 1, 2, 3, Give P(X = 0) = P(X = 1)= p and P(X = 2) = P(X = 3) such that sum p_i x_i^2=2sum p_i x_i then find the value of p

A random variable X takes the values 0,1,2,3 and its mean = 1,3 .If P(X=3) =2P(X=1) and P(X=2) = 0.3 then P(X=0) is

If X is a binomial variate with n = 7 and P(X=3)=P(X=4) then P(X=5)=

If X is a Poisson variate and P(X=1)=2P(X=2) them P(X=3)=

A binomial random variable X, 5P(X = 3) = 2P(X = 2), when n = 5. Find the value of parameter p.