Home
Class 12
MATHS
If X has a binomial distribution, B (n,p...

If `X` has a binomial distribution, `B (n,p)` with parameters `n` and `p` such that `P(X=2)=P(X=3)`, then `E(X)` , the mean of variable `X`, is

A

`2 - p`

B

`3 - p `

C

`p/2`

D

`p/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the mean \( E(X) \) of a binomial distribution \( B(n, p) \) given that \( P(X=2) = P(X=3) \). ### Step-by-Step Solution: 1. **Write the Probability Mass Function (PMF)**: The PMF of a binomial distribution is given by: \[ P(X = r) = \binom{n}{r} p^r (1-p)^{n-r} \] where \( \binom{n}{r} \) is the binomial coefficient. 2. **Set Up the Equation**: According to the problem, we have: \[ P(X=2) = P(X=3) \] Therefore, we can write: \[ \binom{n}{2} p^2 (1-p)^{n-2} = \binom{n}{3} p^3 (1-p)^{n-3} \] 3. **Substituting the Binomial Coefficients**: The binomial coefficients are: \[ \binom{n}{2} = \frac{n(n-1)}{2}, \quad \binom{n}{3} = \frac{n(n-1)(n-2)}{6} \] Substituting these into the equation gives: \[ \frac{n(n-1)}{2} p^2 (1-p)^{n-2} = \frac{n(n-1)(n-2)}{6} p^3 (1-p)^{n-3} \] 4. **Cancel Common Terms**: We can cancel \( n(n-1) \) from both sides (assuming \( n \geq 2 \)): \[ \frac{1}{2} p^2 (1-p)^{n-2} = \frac{(n-2)}{6} p^3 (1-p)^{n-3} \] Now, we can also cancel \( (1-p)^{n-3} \) from both sides (assuming \( p \neq 1 \)): \[ \frac{1}{2} p^2 (1-p) = \frac{(n-2)}{6} p^3 \] 5. **Rearranging the Equation**: Multiply both sides by 6 to eliminate the fraction: \[ 3p^2(1-p) = (n-2)p^3 \] Rearranging gives: \[ 3p^2 - 3p^3 = (n-2)p^3 \] Combining like terms: \[ 3p^2 = (n-2 + 3)p^3 \quad \Rightarrow \quad 3p^2 = (n+1)p^3 \] 6. **Dividing by \( p^2 \) (assuming \( p \neq 0 \))**: \[ 3 = (n+1)p \] Thus, we can express \( p \) in terms of \( n \): \[ p = \frac{3}{n+1} \] 7. **Finding the Mean**: The mean \( E(X) \) of a binomial distribution is given by: \[ E(X) = n \cdot p = n \cdot \frac{3}{n+1} \] Therefore: \[ E(X) = \frac{3n}{n+1} \] ### Final Answer: The mean \( E(X) \) is \( \frac{3n}{n+1} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If X follows a binomial distribution with parameters n=6 and p. If 4P(X=4))=P(X=2) , then P=

If X follows the binomial distribution with parameters n=6 and p and 9p(X=4)=P(X=2), then p is

If X follows a binomial distribution with parameters n=8 and p=1//2 , then p(|X-4|le2) equals

If X follows a binomial distribution with parameters n=8 and p=1//2 , then p(|X-4|le2) equals

If X follows Binomial distribution with parameters n=5, p and P(X=2)=9P(X=3), then p is equal to ……. .

If a binomial distribution have parameters 9, 1//3 then P(X=4)=

If X follows a binomial distribution with parameters n=100 and p = 1/3 , then P(X = r) is maximum when

In a binomial distribution, the parameter n=6 . If 9P(X=4)=P(X=2) , then p=

X follows a binomial distribution with parameters n and p where 0ltPlt1 . If (P(X=r))/(P(X=n-r)) is independent of n and r then p=

If X has binomial distribution with mean np and variance npq, then (P(X = r))/(P(X = r - 1)) is equal to