Home
Class 12
MATHS
The contrapositive of (~p ^^ q) rarr (q ...

The contrapositive of `(~p ^^ q) rarr (q ^^ ~r)` is

A

`(pvv ~q) rarr (~ q vv p)`

B

`(~q vv r) rarr (~ p vv q)`

C

`(~q vv r) rarr (pvv ~q)`

D

`(~p vv r) rarr (~ p ^^ ~r)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the contrapositive of the statement \((\neg p \land q) \implies (q \land \neg r)\), we will follow these steps: ### Step 1: Identify the original statement The original statement is: \[ (\neg p \land q) \implies (q \land \neg r) \] ### Step 2: Recall the definition of contrapositive The contrapositive of a statement of the form \(A \implies B\) is \(\neg B \implies \neg A\). ### Step 3: Identify \(A\) and \(B\) In our case: - \(A\) is \((\neg p \land q)\) - \(B\) is \((q \land \neg r)\) ### Step 4: Negate \(B\) To find \(\neg B\): \[ B = (q \land \neg r) \] Using De Morgan's laws, we have: \[ \neg B = \neg(q \land \neg r) = \neg q \lor r \] ### Step 5: Negate \(A\) Now, we find \(\neg A\): \[ A = (\neg p \land q) \] Again, using De Morgan's laws: \[ \neg A = \neg(\neg p \land q) = p \lor \neg q \] ### Step 6: Form the contrapositive Now we can write the contrapositive: \[ \neg B \implies \neg A \] Substituting \(\neg B\) and \(\neg A\): \[ (\neg q \lor r) \implies (p \lor \neg q) \] ### Final Answer Thus, the contrapositive of \((\neg p \land q) \implies (q \land \neg r)\) is: \[ (\neg q \lor r) \implies (p \lor \neg q) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The contrapositive of p⇒q, is

The contrapositive of p to ( ~ q to ~ r) is

Let p and be two propositions. Then the contrapositive of the implication p rarr q is

The contrapositive of inverse of p to ~ q is

The negation of p ^^ (q rarr ~ r) is

The inverse of the proposition (p ^^ ~q) rarr r is

The inverse of the proposition (p ^^ ~q) rarr r is

The contrapositive of statement ~ p Rightarrow ( p ^^ ~ q) is

Observe the following statements I : The dual of [ ~p ^^ q)] vv [ p ^^ {~(q vv ~s)}] is [~(p vv q)] ^^ [p vv{~(q ^^ ~s)}] II : The dual of ~p ^^ [(~q) ^^ (p vv q) ^^ ~r] is ~p vv[~q) vv(p ^^ q) vv ~r] The true statements in the above is/are :

The contrapositive of the statement If p then q is