Home
Class 12
MATHS
The statement ~(p ^^ q) vv q...

The statement `~(p ^^ q) vv q`

A

is a tautology

B

is equivalent to `(p ^^ q) vv ~q`

C

is equivalent to `p vv q`

D

is a contradiction

Text Solution

AI Generated Solution

The correct Answer is:
To solve the statement `~(p ∧ q) ∨ q`, we will use a truth table to evaluate the expression step by step. ### Step 1: Set Up the Truth Table We will create a truth table with the columns for `p`, `q`, `p ∧ q`, `~(p ∧ q)`, and `~(p ∧ q) ∨ q`. | p | q | p ∧ q | ~(p ∧ q) | ~(p ∧ q) ∨ q | |-------|-------|-------|----------|---------------| | T | T | | | | | T | F | | | | | F | T | | | | | F | F | | | | ### Step 2: Fill in the Values for `p ∧ q` The conjunction `p ∧ q` is true only when both `p` and `q` are true. | p | q | p ∧ q | ~(p ∧ q) | ~(p ∧ q) ∨ q | |-------|-------|-------|----------|---------------| | T | T | T | | | | T | F | F | | | | F | T | F | | | | F | F | F | | | ### Step 3: Fill in the Values for `~(p ∧ q)` Negation `~(p ∧ q)` is true when `p ∧ q` is false. | p | q | p ∧ q | ~(p ∧ q) | ~(p ∧ q) ∨ q | |-------|-------|-------|----------|---------------| | T | T | T | F | | | T | F | F | T | | | F | T | F | T | | | F | F | F | T | | ### Step 4: Fill in the Values for `~(p ∧ q) ∨ q` The disjunction `~(p ∧ q) ∨ q` is true if either `~(p ∧ q)` is true or `q` is true. | p | q | p ∧ q | ~(p ∧ q) | ~(p ∧ q) ∨ q | |-------|-------|-------|----------|---------------| | T | T | T | F | T | | T | F | F | T | T | | F | T | F | T | T | | F | F | F | T | T | ### Final Truth Table After filling in all the values, we have: | p | q | p ∧ q | ~(p ∧ q) | ~(p ∧ q) ∨ q | |-------|-------|-------|----------|---------------| | T | T | T | F | T | | T | F | F | T | T | | F | T | F | T | T | | F | F | F | T | T | ### Conclusion The last column `~(p ∧ q) ∨ q` is true for all combinations of `p` and `q`, which means the statement is a tautology.
Promotional Banner

Similar Questions

Explore conceptually related problems

The statement p vv q is

For any statements p and q , the statement ~(~p^^q) is equivalent to

The logical statement (p to q) vv (q to ~ p) is :

Construst a circuit for the statements ( p ^^ q ^^ r) vv [( ~ p ) ^^ ( ~ q)]

Negation of the statement (p ^^ r) -> (r vv q) is-

Negation of the statement ~ p to (q vv r) is

Let p and q be any two propositons Statement 1 : (p rarr q) harr q vv ~p is a tautology Statement 2 : ~(~p ^^ q) ^^ (p vv q) harr p is fallacy

Construst truth tables for the following statements : ~(p ^^-q) " "(ii) ~[(~p) vee(~q)] " "(iii) (p ^^q) ^^ (~p)

For two statements p and q, the statement ~(pvv(~q)) is equivalent to

Construct the truth table for the statements ~ p vv q.