Home
Class 12
MATHS
Let p and q be any two propositons Sta...

Let p and q be any two propositons
Statement 1 : `(p rarr q) harr q vv ~p` is a tautology
Statement 2 : `~(~p ^^ q) ^^ (p vv q) harr p` is fallacy

A

1) Both statement 1 and statement 2 are true

B

2) Both statement 1 and statement 2 are false

C

3) statement 1 is true and statement 2 is false

D

4) statement 1 is false and statement 2 is true

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the given statements are tautologies or fallacies, we will construct truth tables for each statement. ### Statement 1: \((p \rightarrow q) \leftrightarrow (q \lor \neg p)\) 1. **Construct the truth table:** - List all possible truth values for \(p\) and \(q\): - \(p\): T, T, F, F - \(q\): T, F, T, F - Calculate \(p \rightarrow q\): - \(p \rightarrow q\) is false only when \(p\) is true and \(q\) is false. - Values: T, F, T, T - Calculate \(\neg p\): - Negation of \(p\): F, F, T, T - Calculate \(q \lor \neg p\): - This is true if either \(q\) or \(\neg p\) is true. - Values: T, F, T, T - Calculate \((p \rightarrow q) \leftrightarrow (q \lor \neg p)\): - This is true if both sides have the same truth value. - Values: T, F, T, T 2. **Final column of Statement 1:** - The final truth values are T, F, T, T. - Since there are false values, Statement 1 is **not a tautology**. ### Statement 2: \(\neg(\neg p \land q) \land (p \lor q) \leftrightarrow p\) 1. **Construct the truth table:** - List all possible truth values for \(p\) and \(q\): - \(p\): T, T, F, F - \(q\): T, F, T, F - Calculate \(\neg p\): - Negation of \(p\): F, F, T, T - Calculate \(\neg p \land q\): - This is true only if both \(\neg p\) and \(q\) are true. - Values: F, F, T, F - Calculate \(\neg(\neg p \land q)\): - Negation of the previous result. - Values: T, T, F, T - Calculate \(p \lor q\): - This is true if either \(p\) or \(q\) is true. - Values: T, T, T, F - Calculate \(\neg(\neg p \land q) \land (p \lor q)\): - This is true if both sides are true. - Values: T, T, F, F - Calculate \(\neg(\neg p \land q) \land (p \lor q) \leftrightarrow p\): - This is true if both sides have the same truth value. - Values: T, T, F, F 2. **Final column of Statement 2:** - The final truth values are T, T, F, F. - Since there are false values, Statement 2 is **not a fallacy**. ### Conclusion: - Statement 1 is **not a tautology**. - Statement 2 is **not a fallacy**. ### Final Answer: Both statements are incorrect as per the definitions given in the question. ---
Promotional Banner

Similar Questions

Explore conceptually related problems

(p ^^ ~q) ^^ (~p vv q) is

Statements (p to q) harr (q to p)

The statement ~(p ^^ q) vv q

If p and q are two propositions, then ~ ( p harr q) is

Negation of the statement (p ^^ r) -> (r vv q) is-

Given the following two statements S_(1) : (p ^^ : p) rarr (p ^^ q) is a tautology. S_(2) : (p vv : p) rarr (p vv q) is a fallacy

The negation of (~p ^^ q) vv (p ^^ ~ q) is

The following statement (p to q) to [(~p to q) to q] is

Verify that the statement P vee ~( p ^^ q) is a tautology.

The logical statement (p to q) vv (q to ~ p) is :