To determine whether the given statements are tautologies or fallacies, we will construct truth tables for each statement.
### Statement 1: \((p \rightarrow q) \leftrightarrow (q \lor \neg p)\)
1. **Construct the truth table:**
- List all possible truth values for \(p\) and \(q\):
- \(p\): T, T, F, F
- \(q\): T, F, T, F
- Calculate \(p \rightarrow q\):
- \(p \rightarrow q\) is false only when \(p\) is true and \(q\) is false.
- Values: T, F, T, T
- Calculate \(\neg p\):
- Negation of \(p\): F, F, T, T
- Calculate \(q \lor \neg p\):
- This is true if either \(q\) or \(\neg p\) is true.
- Values: T, F, T, T
- Calculate \((p \rightarrow q) \leftrightarrow (q \lor \neg p)\):
- This is true if both sides have the same truth value.
- Values: T, F, T, T
2. **Final column of Statement 1:**
- The final truth values are T, F, T, T.
- Since there are false values, Statement 1 is **not a tautology**.
### Statement 2: \(\neg(\neg p \land q) \land (p \lor q) \leftrightarrow p\)
1. **Construct the truth table:**
- List all possible truth values for \(p\) and \(q\):
- \(p\): T, T, F, F
- \(q\): T, F, T, F
- Calculate \(\neg p\):
- Negation of \(p\): F, F, T, T
- Calculate \(\neg p \land q\):
- This is true only if both \(\neg p\) and \(q\) are true.
- Values: F, F, T, F
- Calculate \(\neg(\neg p \land q)\):
- Negation of the previous result.
- Values: T, T, F, T
- Calculate \(p \lor q\):
- This is true if either \(p\) or \(q\) is true.
- Values: T, T, T, F
- Calculate \(\neg(\neg p \land q) \land (p \lor q)\):
- This is true if both sides are true.
- Values: T, T, F, F
- Calculate \(\neg(\neg p \land q) \land (p \lor q) \leftrightarrow p\):
- This is true if both sides have the same truth value.
- Values: T, T, F, F
2. **Final column of Statement 2:**
- The final truth values are T, T, F, F.
- Since there are false values, Statement 2 is **not a fallacy**.
### Conclusion:
- Statement 1 is **not a tautology**.
- Statement 2 is **not a fallacy**.
### Final Answer:
Both statements are incorrect as per the definitions given in the question.
---