Home
Class 12
MATHS
(p ^^ ~q) ^^ (~p vv q) is...

`(p ^^ ~q) ^^ (~p vv q)` is

A

a tautology

B

a contradiction

C

both a tauology and a contradiction

D

neither a tautology nor a contradiction

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Observe the following statements I : The dual of [ ~p ^^ q)] vv [ p ^^ {~(q vv ~s)}] is [~(p vv q)] ^^ [p vv{~(q ^^ ~s)}] II : The dual of ~p ^^ [(~q) ^^ (p vv q) ^^ ~r] is ~p vv[~q) vv(p ^^ q) vv ~r] The true statements in the above is/are :

Let p and q be any two propositons Statement 1 : (p rarr q) harr q vv ~p is a tautology Statement 2 : ~(~p ^^ q) ^^ (p vv q) harr p is fallacy

The proposition ~(p vv ~q) vv ~(p vv q) is logically equivalent to

Observe the following statements : Statements - I : (p vv q) ^^ (~p ^^ ~q) is a contradiction. Statement - II : A statement pattern is called a contradiction, it it is a always false, whatever may the truth values of its consitutes statements.

Negation of the statement (p ^^ r) -> (r vv q) is-

The negation of (~p ^^ q) vv (p ^^ ~ q) is

Using truth table show that - (p vv q) vv (~ p ^^ q ) is logically equivalent to ~ p.

Match the duals of the statements in list - I : {:(,"List - I",,"List - II"),((a),(p ^^ q) vv t,(I) ,(p ^^ q) ^^ t),((b),(p vv t) ^^ r,(II),(p vv q) ^^ t),((c),(p vv q)vv t ,(III ),(p ^^ t) vv r ):} The correct match is :

Match the duals of the statements in List - I : {:(,"List - I",,"List - II"),((1),(p vv q) vv r,(a) ,(p vv q) vv r),((2),(p ^^ q) ^^ r,(b),(p ^^ q) vv (r ^^ s)),((3),(pvv q) ^^ (r vv s),(c ),(p ^^ q) ^^ r):} The correct match is :

Given the following two statements S_(1) : (p ^^ : p) rarr (p ^^ q) is a tautology. S_(2) : (p vv : p) rarr (p vv q) is a fallacy