Home
Class 12
MATHS
Find the values of alpha^(3)+beta^(3) in...

Find the values of `alpha^(3)+beta^(3)` in terms of a, b, c if `alpha, beta` are roots of `ax^(2)+bx+c=0`, `c != 0`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \alpha^3 + \beta^3 \) in terms of \( a, b, c \) where \( \alpha \) and \( \beta \) are the roots of the quadratic equation \( ax^2 + bx + c = 0 \), we can follow these steps: ### Step-by-Step Solution: 1. **Use the identity for the sum of cubes**: \[ \alpha^3 + \beta^3 = (\alpha + \beta)(\alpha^2 - \alpha\beta + \beta^2) \] We can rewrite \( \alpha^2 - \alpha\beta + \beta^2 \) as \( (\alpha + \beta)^2 - 3\alpha\beta \). 2. **Find \( \alpha + \beta \) and \( \alpha\beta \)**: From Vieta's formulas, we know: \[ \alpha + \beta = -\frac{b}{a} \] \[ \alpha\beta = \frac{c}{a} \] 3. **Substitute these values into the identity**: Now, substituting \( \alpha + \beta \) and \( \alpha\beta \) into our expression: \[ \alpha^3 + \beta^3 = \left(-\frac{b}{a}\right) \left(\left(-\frac{b}{a}\right)^2 - 3\left(\frac{c}{a}\right)\right) \] 4. **Simplify the expression**: First, calculate \( \left(-\frac{b}{a}\right)^2 \): \[ \left(-\frac{b}{a}\right)^2 = \frac{b^2}{a^2} \] Now, substitute this back into the equation: \[ \alpha^3 + \beta^3 = \left(-\frac{b}{a}\right) \left(\frac{b^2}{a^2} - 3\frac{c}{a}\right) \] This simplifies to: \[ \alpha^3 + \beta^3 = -\frac{b}{a} \left(\frac{b^2 - 3ac}{a^2}\right) \] 5. **Combine the fractions**: \[ \alpha^3 + \beta^3 = -\frac{b(b^2 - 3ac)}{a^3} \] 6. **Final result**: Therefore, the final expression for \( \alpha^3 + \beta^3 \) in terms of \( a, b, c \) is: \[ \alpha^3 + \beta^3 = \frac{-b^3 + 3abc}{a^3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Form the values of (1)/(alpha)+(1)/(beta) in terms of a, b, c if alpha, beta are roots of ax^(2)+bx+c=0 , c != 0

Form the values of (1)/(alpha^(2))+(1)/(beta^(2)) in terms of a, b, c if alpha, beta are roots of ax^(2)+bx+c=0 , c != 0

If alpha. beta are the roots of x^2 +bx+c=0 and alpha + h, beta + h are the roots of x^2 + qx +r=0 then 2h=

If alpha, beta are the roots of x^(2) + bx + c = 0 and, alpha +h, beta+h are the roots of x^(2) + qx +r = 0 then h =

In the quadratic equation ax^2 + bx + c = 0 , if Delta = b^2-4ac and alpha + beta, alpha^2 + beta^2, alpha^3 + beta^3 are in GP. where alpha, beta are the roots of ax^2 + bx + c =0 , then

If 0 gt a gt b gt c and the roots alpha, beta are imaginary roots of ax^(2) + bx + c = 0 then

If alpha, beta are the roots of ax^(2) + bx + c = 0 and alpha + h, beta + h are the roots of px^(2) + qx + r = 0 , then h =

In the quadratic equation ax^2 + bx + c = 0 . if delta = b^2-4ac and alpha+beta , alpha^2+beta^2 , alpha^3+beta^3 and alpha,beta are the roots of ax^2 + bx + c =0

If alpha beta( alpha lt beta) are two distinct roots of the equation. ax^(2)+bx+c=0 , then

If alpha and beta (alpha lt beta) are the roots of the equation x^(2) + bx + c = 0 , where c lt 0 lt b , then