Home
Class 12
MATHS
If alpha , beta , gamma are the roo...

If ` alpha , beta , gamma` are the roots of ` x^3 -px^2 +qx -r=0` and `r ne 0` then find `(1)/( alpha^2) +(1)/( beta^2) +(1)/( gamma ^2)` in terms of p,q ,r

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \frac{1}{\alpha^2} + \frac{1}{\beta^2} + \frac{1}{\gamma^2} \) in terms of \( p, q, \) and \( r \), given that \( \alpha, \beta, \gamma \) are the roots of the polynomial \( x^3 - px^2 + qx - r = 0 \). ### Step-by-Step Solution: 1. **Identify the roots and their relationships**: The roots of the polynomial \( x^3 - px^2 + qx - r = 0 \) are \( \alpha, \beta, \gamma \). By Vieta's formulas, we know: - \( \alpha + \beta + \gamma = p \) - \( \alpha\beta + \beta\gamma + \gamma\alpha = q \) - \( \alpha\beta\gamma = r \) 2. **Express the desired sum**: We want to find: \[ \frac{1}{\alpha^2} + \frac{1}{\beta^2} + \frac{1}{\gamma^2} \] This can be rewritten using a common denominator: \[ \frac{\beta^2\gamma^2 + \alpha^2\gamma^2 + \alpha^2\beta^2}{\alpha^2\beta^2\gamma^2} \] 3. **Calculate the numerator**: The numerator \( \beta^2\gamma^2 + \alpha^2\gamma^2 + \alpha^2\beta^2 \) can be expressed as: \[ \beta^2\gamma^2 + \alpha^2\gamma^2 + \alpha^2\beta^2 = (\alpha\beta)^2 + (\beta\gamma)^2 + (\gamma\alpha)^2 \] We can use the identity: \[ (x+y+z)^2 = x^2 + y^2 + z^2 + 2(xy + yz + zx) \] where \( x = \alpha\beta, y = \beta\gamma, z = \gamma\alpha \). 4. **Relate the terms**: From Vieta's formulas, we know: \[ xy + yz + zx = \alpha\beta\gamma(\alpha + \beta + \gamma) = r \cdot p \] Thus, \[ (\alpha\beta + \beta\gamma + \gamma\alpha)^2 = q^2 \] Therefore, \[ \beta^2\gamma^2 + \alpha^2\gamma^2 + \alpha^2\beta^2 = q^2 - 2r \cdot p \] 5. **Calculate the denominator**: The denominator \( \alpha^2\beta^2\gamma^2 \) can be expressed as: \[ (\alpha\beta\gamma)^2 = r^2 \] 6. **Combine the results**: Now substituting back into our expression, we have: \[ \frac{\beta^2\gamma^2 + \alpha^2\gamma^2 + \alpha^2\beta^2}{\alpha^2\beta^2\gamma^2} = \frac{q^2 - 2rp}{r^2} \] ### Final Answer: Thus, the final result is: \[ \frac{1}{\alpha^2} + \frac{1}{\beta^2} + \frac{1}{\gamma^2} = \frac{q^2 - 2rp}{r^2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum alpha^2

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum alpha^3

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum (1)/( alpha )

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum alpha^2 beta^2

If alpha , beta , gamma are the roots of x^3 + px^2+qx -r=0 then alpha^2 + beta^2 + gamma^2 =

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then the value of (1 + alpha^2) (1+ beta^2) (1+ gamma^2) is

If alpha , beta , gamma are the roots of x^3 + 3x^2 -4x +2=0 then the equation whose roots are (1)/( alpha beta) ,(1)/( beta gamma) ,(1)/( gamma alpha) is

If alpha , beta , gamma are the roots of x^3 +qx +r=0 then sum ( beta + gamma )^(-1) =

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum alpha^2 beta + sum alpha beta ^2

If alpha, beta and gamma are the roots of x^3 - x^2-1 = 0, then value of (1+ alpha)/(1-alpha) + (1+ beta) / (1 - beta) + (1 + gamma) / (1 - gamma) is