Home
Class 12
MATHS
If alpha,beta,gamma are the roots of ...

If `alpha,beta,gamma ` are the roots of
`4x^3-6x^2+7x+3=0 ` then find the value of `alpha beta +beta gamma+gamma alpha`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \alpha \beta + \beta \gamma + \gamma \alpha \) for the roots \( \alpha, \beta, \gamma \) of the polynomial equation \( 4x^3 - 6x^2 + 7x + 3 = 0 \), we can use Vieta's formulas. ### Step-by-Step Solution: 1. **Identify the coefficients**: The given polynomial is \( 4x^3 - 6x^2 + 7x + 3 = 0 \). We can identify the coefficients: - \( A = 4 \) (coefficient of \( x^3 \)) - \( B = -6 \) (coefficient of \( x^2 \)) - \( C = 7 \) (coefficient of \( x \)) - \( D = 3 \) (constant term) 2. **Apply Vieta's Formulas**: According to Vieta's formulas for a cubic equation \( Ax^3 + Bx^2 + Cx + D = 0 \): - The sum of the roots \( \alpha + \beta + \gamma = -\frac{B}{A} \) - The sum of the products of the roots taken two at a time \( \alpha\beta + \beta\gamma + \gamma\alpha = \frac{C}{A} \) - The product of the roots \( \alpha\beta\gamma = -\frac{D}{A} \) 3. **Calculate \( \alpha\beta + \beta\gamma + \gamma\alpha \)**: From Vieta's formulas, we have: \[ \alpha\beta + \beta\gamma + \gamma\alpha = \frac{C}{A} \] Substituting the values of \( C \) and \( A \): \[ \alpha\beta + \beta\gamma + \gamma\alpha = \frac{7}{4} \] 4. **Final Result**: Therefore, the value of \( \alpha \beta + \beta \gamma + \gamma \alpha \) is \( \frac{7}{4} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta, gamma are the roots of x^(3)+ax+b=0 , then find the value of alpha^(3)+beta^(3)+gamma^(3) .

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum alpha^3

If alpha, beta, gamma are the roots of x^(3) + ax^(2) + b = 0 , then the value of |(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)| , is

If alpha , beta , gamma are the roots of x^3 + 2x^2 + 3x +8=0 then ( alpha + beta ) ( beta + gamma) ( gamma + alpha ) =

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum alpha^2 beta + sum alpha beta ^2

If alpha , beta , gamma are the roots of x^3 -7x + 6 =0 the equation whose roots are alpha + beta , beta + gamma , gamma + alpha is

If alpha , beta , gamma are the roots of the equation x^3 + qx +r=0 find the value of ( beta - gamma )^2 +( gamma - alpha)^2 +(alpha - beta)^2

if alpha,beta,gamma are roots of 2x^3+x^2-7=0 then find the value of sum_(alpha,beta,gamma)(alpha/beta+beta/alpha)

If alpha,beta,gamma are the roots of he euation x^3+4x+1=0, then find the value of (alpha+beta)^(-1)+(beta+gamma)^(-1)+(gamma+alpha)^(-1) .

If alpha,beta,gamma are the roots of x^(3)+2x^(2)-x-3=0 The value of |{:(alpha, beta ,gamma),(gamma,alpha ,beta),(beta,gamma ,alpha):}| is equal to