Home
Class 12
MATHS
If alpha , beta , gamma are the ro...

If ` alpha , beta , gamma ` are the roots of ` x^3 +px^2 +qx +r=0` then find
`sum (1)/( alpha )`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the summation \( \sum \frac{1}{\alpha} \) where \( \alpha, \beta, \gamma \) are the roots of the polynomial \( x^3 + px^2 + qx + r = 0 \), we can follow these steps: ### Step 1: Understand the roots and the polynomial The given polynomial is \( x^3 + px^2 + qx + r = 0 \). The roots of this polynomial are \( \alpha, \beta, \gamma \). ### Step 2: Use Vieta's formulas According to Vieta's formulas for a cubic equation \( x^3 + ax^2 + bx + c = 0 \): - The sum of the roots \( \alpha + \beta + \gamma = -p \) - The sum of the products of the roots taken two at a time \( \alpha\beta + \beta\gamma + \gamma\alpha = q \) - The product of the roots \( \alpha\beta\gamma = -r \) ### Step 3: Write the expression for \( \sum \frac{1}{\alpha} \) The expression \( \sum \frac{1}{\alpha} \) can be rewritten as: \[ \sum \frac{1}{\alpha} = \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} \] This can be combined into a single fraction: \[ \sum \frac{1}{\alpha} = \frac{\beta\gamma + \alpha\gamma + \alpha\beta}{\alpha\beta\gamma} \] ### Step 4: Substitute the values from Vieta's formulas From Vieta's formulas: - The numerator \( \beta\gamma + \alpha\gamma + \alpha\beta = q \) - The denominator \( \alpha\beta\gamma = -r \) Thus, we can substitute these values into the expression: \[ \sum \frac{1}{\alpha} = \frac{q}{-\r} \] ### Step 5: Final result Therefore, the value of \( \sum \frac{1}{\alpha} \) is: \[ \sum \frac{1}{\alpha} = -\frac{q}{r} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum alpha^3

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum alpha^2

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum alpha^2 beta^2

If alpha , beta , gamma are the roots of x^3 -px^2 +qx -r=0 and r ne 0 then find (1)/( alpha^2) +(1)/( beta^2) +(1)/( gamma ^2) in terms of p,q ,r

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum alpha^2 beta + sum alpha beta ^2

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find ( beta + gamma - 3 alpha ) ( gamma + alpha - 3 beta) (alpha + beta - 3 gamma)

If alpha , beta , gamma are the roots of x^3 + px^2 + qx + r=0 form the equation whose roots are alpha beta , beta gamma , gamma alpha

If alpha , beta , gamma are the roots of x^3 + 3x^2 -4x +2=0 then the equation whose roots are (1)/( alpha beta) ,(1)/( beta gamma) ,(1)/( gamma alpha) is

If alpha , beta , gamma are the roots of the equation x^3 +4x^2 -5x +3=0 then sum (1)/( alpha^2 beta^2)=

If alpha , beta , gamma are the roots of x^3 + px^2+qx -r=0 then alpha^2 + beta^2 + gamma^2 =