Home
Class 12
MATHS
If alpha , beta , gamma are the ro...

If ` alpha , beta , gamma ` are the roots of ` x^3 +px^2 +qx +r=0` then find
`sum alpha^2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the squares of the roots \( \alpha^2 + \beta^2 + \gamma^2 \) for the polynomial equation \( x^3 + px^2 + qx + r = 0 \), we can follow these steps: ### Step 1: Identify the coefficients The given polynomial is: \[ x^3 + px^2 + qx + r = 0 \] Here, we can identify the coefficients: - \( a = 1 \) - \( b = p \) - \( c = q \) - \( d = r \) ### Step 2: Use Vieta's formulas According to Vieta's formulas for a cubic equation \( ax^3 + bx^2 + cx + d = 0 \): - The sum of the roots \( \alpha + \beta + \gamma = -\frac{b}{a} = -p \) - The sum of the products of the roots taken two at a time \( \alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a} = q \) - The product of the roots \( \alpha\beta\gamma = -\frac{d}{a} = -r \) ### Step 3: Find the sum of the squares of the roots We need to find \( \alpha^2 + \beta^2 + \gamma^2 \). We can use the identity: \[ \alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \gamma\alpha) \] ### Step 4: Substitute the values from Vieta's formulas Substituting the values we found using Vieta's formulas: \[ \alpha^2 + \beta^2 + \gamma^2 = (-p)^2 - 2q \] ### Step 5: Simplify the expression Now, simplifying the expression gives us: \[ \alpha^2 + \beta^2 + \gamma^2 = p^2 - 2q \] ### Final Answer Thus, the sum of the squares of the roots is: \[ \alpha^2 + \beta^2 + \gamma^2 = p^2 - 2q \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum alpha^3

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum (1)/( alpha )

If alpha , beta , gamma are the roots of x^3 -px^2 +qx -r=0 and r ne 0 then find (1)/( alpha^2) +(1)/( beta^2) +(1)/( gamma ^2) in terms of p,q ,r

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find ( beta + gamma - 3 alpha ) ( gamma + alpha - 3 beta) (alpha + beta - 3 gamma)

If alpha , beta , gamma are the roots of the equation x^3 +px^2 +qx +r=0 then sum alpha^2 ( beta + gamma)=

If alpha , beta , gamma are the roots of x^3 + px^2 + qx + r=0 form the equation whose roots are alpha beta , beta gamma , gamma alpha

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then the value of (1 + alpha^2) (1+ beta^2) (1+ gamma^2) is

If alpha , beta , gamma are the roots of the equation x^3 -6x^2 +11 x +6=0 then sum alpha^2 beta =

If alpha , beta , gamma are the roots of x^3 + px^2+qx -r=0 then alpha^2 + beta^2 + gamma^2 =

If alpha, beta, gamma are the roots of the equation x^3 + px^2 + qx + r = n then the value of (alpha - 1/(beta gamma)) (beta -1/(gamma alpha)) (gamma-1/(alpha beta)) is: