Home
Class 12
MATHS
If alpha , beta , gamma are the ro...

If ` alpha , beta , gamma ` are the roots of ` x^3 +px^2 +qx +r=0` then find
`sum alpha^3`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the cubes of the roots \( \alpha, \beta, \gamma \) of the polynomial equation \( x^3 + px^2 + qx + r = 0 \), we can use the relationships derived from Vieta's formulas and the identity for the sum of cubes. ### Step-by-Step Solution: 1. **Identify the Roots and Coefficients**: Given the polynomial \( x^3 + px^2 + qx + r = 0 \), we identify: - The roots are \( \alpha, \beta, \gamma \). - Coefficients are \( a = 1, b = p, c = q, d = r \). 2. **Apply Vieta's Formulas**: From Vieta's formulas, we have: - \( \alpha + \beta + \gamma = -p \) - \( \alpha \beta + \beta \gamma + \gamma \alpha = q \) - \( \alpha \beta \gamma = -r \) 3. **Use the Identity for the Sum of Cubes**: The sum of the cubes of the roots can be expressed as: \[ \alpha^3 + \beta^3 + \gamma^3 = (\alpha + \beta + \gamma)(\alpha^2 + \beta^2 + \gamma^2 - \alpha \beta - \beta \gamma - \gamma \alpha) + 3\alpha \beta \gamma \] 4. **Calculate \( \alpha^2 + \beta^2 + \gamma^2 \)**: We can find \( \alpha^2 + \beta^2 + \gamma^2 \) using the formula: \[ \alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha \beta + \beta \gamma + \gamma \alpha) \] Substituting the values: \[ \alpha^2 + \beta^2 + \gamma^2 = (-p)^2 - 2q = p^2 - 2q \] 5. **Substitute Back into the Sum of Cubes Formula**: Now substitute \( \alpha + \beta + \gamma \) and \( \alpha^2 + \beta^2 + \gamma^2 \) into the sum of cubes formula: \[ \alpha^3 + \beta^3 + \gamma^3 = (-p)((p^2 - 2q) - q) + 3(-r) \] Simplifying this: \[ = -p(p^2 - 3q) - 3r \] \[ = -p^3 + 3pq - 3r \] 6. **Final Result**: Therefore, the sum of the cubes of the roots is: \[ \alpha^3 + \beta^3 + \gamma^3 = -p^3 + 3pq - 3r \] ### Summary: The required value of \( \alpha^3 + \beta^3 + \gamma^3 \) is: \[ \alpha^3 + \beta^3 + \gamma^3 = -p^3 + 3pq - 3r \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum alpha^2

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum alpha^2 beta^2

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum alpha^2 beta + sum alpha beta ^2

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum (1)/( alpha )

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find ( beta + gamma - 3 alpha ) ( gamma + alpha - 3 beta) (alpha + beta - 3 gamma)

If alpha , beta , gamma are the roots of x^3 -px^2 +qx -r=0 and r ne 0 then find (1)/( alpha^2) +(1)/( beta^2) +(1)/( gamma ^2) in terms of p,q ,r

If alpha , beta , gamma are the roots of the equation x^3 +px^2 +qx +r=0 then sum alpha^2 ( beta + gamma)=

If alpha , beta , gamma are the roots of x^3 + px^2 + qx + r=0 form the equation whose roots are alpha beta , beta gamma , gamma alpha

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then the value of (1 + alpha^2) (1+ beta^2) (1+ gamma^2) is

If alpha , beta , gamma are the roots of x^3 + px^2+qx -r=0 then alpha^2 + beta^2 + gamma^2 =