Home
Class 12
MATHS
If alpha , beta , gamma are the ro...

If ` alpha , beta , gamma ` are the roots of ` x^3 +px^2 +qx +r=0` then find
` sum alpha^2 beta + sum alpha beta ^2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \sum \alpha^2 \beta + \sum \alpha \beta^2 \) given that \( \alpha, \beta, \gamma \) are the roots of the polynomial \( x^3 + px^2 + qx + r = 0 \). ### Step-by-Step Solution: 1. **Identify the roots and coefficients**: The polynomial is given as \( x^3 + px^2 + qx + r = 0 \). The roots are \( \alpha, \beta, \gamma \). - From Vieta's formulas, we have: - \( \alpha + \beta + \gamma = -p \) - \( \alpha\beta + \beta\gamma + \gamma\alpha = q \) - \( \alpha\beta\gamma = -r \) 2. **Express the required sum**: We need to find \( \sum \alpha^2 \beta + \sum \alpha \beta^2 \). This can be expanded as: \[ \alpha^2 \beta + \beta^2 \alpha + \beta^2 \gamma + \gamma^2 \beta + \gamma^2 \alpha + \alpha^2 \gamma \] 3. **Rearranging the terms**: We can rearrange the expression: \[ \sum \alpha^2 \beta + \sum \alpha \beta^2 = \alpha^2 \beta + \beta^2 \alpha + \beta^2 \gamma + \gamma^2 \beta + \gamma^2 \alpha + \alpha^2 \gamma \] This can be grouped as: \[ = \alpha \beta (\alpha + \beta) + \beta \gamma (\beta + \gamma) + \gamma \alpha (\gamma + \alpha) \] 4. **Substituting the values**: Using \( \alpha + \beta + \gamma = -p \), we can substitute: \[ = \alpha \beta (-p - \gamma) + \beta \gamma (-p - \alpha) + \gamma \alpha (-p - \beta) \] Expanding this gives: \[ = -p(\alpha \beta + \beta \gamma + \gamma \alpha) - (\alpha \beta \gamma + \beta \gamma \alpha + \gamma \alpha \beta) \] 5. **Using Vieta's relations**: Substitute \( \alpha \beta + \beta \gamma + \gamma \alpha = q \) and \( \alpha \beta \gamma = -r \): \[ = -pq - (-r) = -pq + r \] 6. **Final result**: Thus, the required value is: \[ \sum \alpha^2 \beta + \sum \alpha \beta^2 = -pq + 3r \] ### Final Answer: \[ \sum \alpha^2 \beta + \sum \alpha \beta^2 = 3r - pq \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum alpha^3

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum (1)/( alpha )

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum alpha^2 beta^2

If alpha , beta , gamma are the roots of the equation x^3 +px^2 +qx +r=0 then sum alpha^2 ( beta + gamma)=

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find ( beta + gamma - 3 alpha ) ( gamma + alpha - 3 beta) (alpha + beta - 3 gamma)

If alpha , beta , gamma are the roots of x^3 + px^2+qx -r=0 then alpha^2 + beta^2 + gamma^2 =

If alpha , beta , gamma are the roots of the equation x^3 -6x^2 +11 x +6=0 then sum alpha^2 beta =

If alpha ,beta and gamma are the roots of x^3-2x^2+3x-4 =0 , then find (i) sumalpha^2beta^2 (ii)sumalpha beta(alpha+beta)

If alpha , beta , gamma are the roots of the equation x^3 +4x^2 -5x +3=0 then sum (1)/( alpha^2 beta^2)=

If alpha, beta ,gamma are roots of x^(3) + px^(2) + qx + r = 0 then sum (1)/(alpha^(2)) =