Home
Class 12
MATHS
If alpha , beta , gamma are the roo...

If ` alpha , beta , gamma ` are the roots of the equation `x^3 +px^2 + qx +r=0` prove that
` ( alpha + beta ) ( beta + gamma) ( gamma + alpha ) =r-pq`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha , beta , gamma are the roots of the equation x^3 +px^2 +qx +r=0 then sum alpha^2 ( beta + gamma)=

If alpha, beta, gamma are roots of the equation x^(3) + px^(2) + qx + r = 0 , then (alpha + beta) (beta + gamma)(gamma + alpha) =

If alpha, beta, gamma are the roots of the equation x^3 + px^2 + qx + r = n then the value of (alpha - 1/(beta gamma)) (beta -1/(gamma alpha)) (gamma-1/(alpha beta)) is:

If alpha , beta , gamma are the roots of x^3 + px^2 + qx + r=0 form the equation whose roots are alpha beta , beta gamma , gamma alpha

If alpha , beta , gamma are the roots of x^3 + 3x^2 -4x +2=0 then the equation whose roots are (1)/( alpha beta) ,(1)/( beta gamma) ,(1)/( gamma alpha) is

If alpha, beta, gamma are the roots of the equation x^(3) + x + 1 = 0 , then the value of alpha^(3) + beta^(3) + gamma^(3) , is

If alpha, beta, gamma are the roots of the equation x^(3) + ax^(2) + bx + c = 0, "then" alpha^(-1) + beta^(-1) + gamma^(-1)=

If alpha , beta , gamma are the roots of the equation x^3 + qx +r=0 find the value of ( beta - gamma )^2 +( gamma - alpha)^2 +(alpha - beta)^2

If alpah , beta , gamma are the roots of the equation x^3 + qx +r=0 find the value of ( beta + gamma )^(-1) +( gamma + alpha )^(-1) + ( alpha + beta)^(-1)

If alpha, beta, gamma are the roots of the equation x^(2)=px^(2)+qx-r=0, then the value of sum(alphabeta)/(gamma) is equal to