Home
Class 12
MATHS
If alpah , beta , gamma are the root...

If ` alpah , beta , gamma` are the roots of the equation `x^3 + qx +r=0` find the value of
`( beta + gamma )^(-1) +( gamma + alpha )^(-1) + ( alpha + beta)^(-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( ( \beta + \gamma )^{-1} + ( \gamma + \alpha )^{-1} + ( \alpha + \beta )^{-1} \) given that \( \alpha, \beta, \gamma \) are the roots of the equation \( x^3 + qx + r = 0 \). ### Step-by-Step Solution: 1. **Identify the relationships from the roots:** From Vieta's formulas, we know: - The sum of the roots: \[ \alpha + \beta + \gamma = 0 \] - The sum of the products of the roots taken two at a time: \[ \alpha\beta + \beta\gamma + \gamma\alpha = q \] - The product of the roots: \[ \alpha\beta\gamma = -r \] 2. **Express the required sum in terms of the roots:** We rewrite the expression: \[ ( \beta + \gamma )^{-1} + ( \gamma + \alpha )^{-1} + ( \alpha + \beta )^{-1} \] Using the relationships from Vieta's formulas: - \( \beta + \gamma = -\alpha \) - \( \gamma + \alpha = -\beta \) - \( \alpha + \beta = -\gamma \) Therefore, we can rewrite the expression as: \[ (-\alpha)^{-1} + (-\beta)^{-1} + (-\gamma)^{-1} \] This simplifies to: \[ -\left( \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} \right) \] 3. **Combine the fractions:** The expression \( \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} \) can be combined using a common denominator: \[ \frac{\beta\gamma + \gamma\alpha + \alpha\beta}{\alpha\beta\gamma} \] Substituting the known values from Vieta's formulas: \[ = \frac{q}{-r} \] 4. **Final expression:** Thus, we have: \[ -\left( \frac{q}{-r} \right) = \frac{q}{r} \] ### Final Answer: \[ ( \beta + \gamma )^{-1} + ( \gamma + \alpha )^{-1} + ( \alpha + \beta )^{-1} = \frac{q}{r} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha , beta , gamma are the roots of the equation x^3 + qx +r=0 find the value of ( beta - gamma )^2 +( gamma - alpha)^2 +(alpha - beta)^2

If alpha, beta, gamma are the roots of the equation x^(3) + x + 1 = 0 , then the value of alpha^(3) + beta^(3) + gamma^(3) , is

If alpha , beta , gamma are the roots of the equation x^3 +px^2 + qx +r=0 prove that ( alpha + beta ) ( beta + gamma) ( gamma + alpha ) =r-pq

If alpha , beta , gamma are the roots of the equation x^3 +px^2 +qx +r=0 then sum alpha^2 ( beta + gamma)=

If alpha, beta, gamma are the roots of the equation x^3 + px^2 + qx + r = n then the value of (alpha - 1/(beta gamma)) (beta -1/(gamma alpha)) (gamma-1/(alpha beta)) is:

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then the value of (1 + alpha^2) (1+ beta^2) (1+ gamma^2) is

If alpha,beta,gamma are the roots of he euation x^3+4x+1=0, then find the value of (alpha+beta)^(-1)+(beta+gamma)^(-1)+(gamma+alpha)^(-1) .

If alpha,beta,gamma are the roots of the equation x^3+p x^2+q x+r=0, then find he value of (alpha-1/(betagamma))(beta-1/(gammaalpha))(gamma-1/(alphabeta)) .

If alpha, beta, gamma are the roots of the equation x^(3) + ax^(2) + bx + c = 0, "then" alpha^(-1) + beta^(-1) + gamma^(-1)=

If alpha, beta, gamma are the roots of the equation x^(2)=px^(2)+qx-r=0, then the value of sum(alphabeta)/(gamma) is equal to