Home
Class 12
MATHS
Solve the following equation. x^4-10x^3+...

Solve the following equation. `x^4-10x^3+26x^2-10x+1=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x^4 - 10x^3 + 26x^2 - 10x + 1 = 0 \), we can follow these steps: ### Step 1: Divide the equation by \( x^2 \) We start by dividing the entire equation by \( x^2 \): \[ \frac{x^4}{x^2} - \frac{10x^3}{x^2} + \frac{26x^2}{x^2} - \frac{10x}{x^2} + \frac{1}{x^2} = 0 \] This simplifies to: \[ x^2 - 10x + 26 - \frac{10}{x} + \frac{1}{x^2} = 0 \] ### Step 2: Rearrange the equation We can rearrange the equation to group terms: \[ x^2 + \frac{1}{x^2} - 10\left(x + \frac{1}{x}\right) + 26 = 0 \] ### Step 3: Substitute \( y = x + \frac{1}{x} \) Let \( y = x + \frac{1}{x} \). Then, we know that: \[ x^2 + \frac{1}{x^2} = y^2 - 2 \] Substituting this into our equation gives: \[ (y^2 - 2) - 10y + 26 = 0 \] This simplifies to: \[ y^2 - 10y + 24 = 0 \] ### Step 4: Solve the quadratic equation Now we solve the quadratic equation \( y^2 - 10y + 24 = 0 \) using the quadratic formula: \[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1 \), \( b = -10 \), and \( c = 24 \): \[ y = \frac{10 \pm \sqrt{(-10)^2 - 4 \cdot 1 \cdot 24}}{2 \cdot 1} \] \[ y = \frac{10 \pm \sqrt{100 - 96}}{2} \] \[ y = \frac{10 \pm \sqrt{4}}{2} \] \[ y = \frac{10 \pm 2}{2} \] Thus, we have: \[ y = \frac{12}{2} = 6 \quad \text{or} \quad y = \frac{8}{2} = 4 \] ### Step 5: Solve for \( x \) Now we have two cases to solve for \( x \): 1. \( x + \frac{1}{x} = 6 \) 2. \( x + \frac{1}{x} = 4 \) #### Case 1: \( x + \frac{1}{x} = 6 \) Multiply through by \( x \): \[ x^2 - 6x + 1 = 0 \] Using the quadratic formula: \[ x = \frac{6 \pm \sqrt{(-6)^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} \] \[ x = \frac{6 \pm \sqrt{36 - 4}}{2} \] \[ x = \frac{6 \pm \sqrt{32}}{2} \] \[ x = \frac{6 \pm 4\sqrt{2}}{2} \] \[ x = 3 \pm 2\sqrt{2} \] #### Case 2: \( x + \frac{1}{x} = 4 \) Multiply through by \( x \): \[ x^2 - 4x + 1 = 0 \] Using the quadratic formula: \[ x = \frac{4 \pm \sqrt{(-4)^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} \] \[ x = \frac{4 \pm \sqrt{16 - 4}}{2} \] \[ x = \frac{4 \pm \sqrt{12}}{2} \] \[ x = \frac{4 \pm 2\sqrt{3}}{2} \] \[ x = 2 \pm \sqrt{3} \] ### Final Solution Thus, the four roots of the equation \( x^4 - 10x^3 + 26x^2 - 10x + 1 = 0 \) are: \[ 3 + 2\sqrt{2}, \quad 3 - 2\sqrt{2}, \quad 2 + \sqrt{3}, \quad 2 - \sqrt{3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the following equations 4x^3 -13x^2 -13 x+4=0

Solve the following equation : 3^(x+2)+3^(-x)=10

Solve the following equations. (i) x^(1+log_10x)=10x

Solve the following equations : 3(x+1)=12+4(x-1)

Solve the following quadratic: 27 x^2-10 x+1=0

Solve the following equation: (|x-2|)/(x-3)=1/(x-3)

Solve the following equation: x+(4)/(x)=-4, x ne 0

Solve the following quadratic equations. x^(2)-15x=-26

Solve the following equations. x^((log_10x+5)/3)=10^(5+log_10x)