Home
Class 12
MATHS
If alpha , beta , gamma are the root...

If ` alpha , beta , gamma` are the roots of` x^3 -3x^2 +3x+7=0` then show that ` (alpha-1)/( beta-1) +(beta -1)/(gamma -1) +(gamma -1)/( alpha-1) = 3 omega ` where ` omega ` is complex cube of unity .

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum (1)/( alpha )

if alpha,beta,gamma are the roots of x^3-3x^2 +3x + 7 =0 then (alpha-1)/(beta-1)+(beta-1)/(gamma-1)+(gamma-1)/(alpha-1)

If alpha , beta , gamma are the roots of x^3 +2x^2 +3x +8=0 then (3-alpha )(3 - beta) (3-gamma) =

If alpha , beta , gamma are the roots of x^3 -3x +1=0 then the equation whose roots are alpha - (1)/( beta gamma) , beta - (1)/( gamma alpha ) , gamma - (1)/( alpha beta ) is

If alpha , beta , gamma are the roots of x^3 + 3x^2 -4x +2=0 then the equation whose roots are (1)/( alpha beta) ,(1)/( beta gamma) ,(1)/( gamma alpha) is

If alpha , beta , gamma are the roots of x^3 + 2x^2 + 3x +8=0 then ( alpha + beta ) ( beta + gamma) ( gamma + alpha ) =

If alpha , beta , gamma are the roots of x^3 +qx +r=0 then sum ( beta + gamma )^(-1) =

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then the value of (1 + alpha^2) (1+ beta^2) (1+ gamma^2) is

If alpha, beta, gamma are the roots of the equation x^3 + px^2 + qx + r = n then the value of (alpha - 1/(beta gamma)) (beta -1/(gamma alpha)) (gamma-1/(alpha beta)) is:

If alpha , beta , gamma are the roots of x^3 -7x + 6 =0 the equation whose roots are alpha + beta , beta + gamma , gamma + alpha is