Home
Class 12
MATHS
If alpha , beta , gamma are the root...

If ` alpha , beta , gamma ` are the roots of ` x^3 + qx +r=0` then `(1)/( alpha + beta - gamma) +(1)/( beta + gamma - alpha) +(1)/(gamma + alpha - beta)`=

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression: \[ \frac{1}{\alpha + \beta - \gamma} + \frac{1}{\beta + \gamma - \alpha} + \frac{1}{\gamma + \alpha - \beta} \] where \(\alpha\), \(\beta\), and \(\gamma\) are the roots of the cubic equation \(x^3 + qx + r = 0\). ### Step 1: Use Vieta's Formulas From Vieta's formulas, we know: - The sum of the roots: \(\alpha + \beta + \gamma = 0\) - The sum of the products of the roots taken two at a time: \(\alpha\beta + \beta\gamma + \gamma\alpha = q\) - The product of the roots: \(\alpha\beta\gamma = -r\) ### Step 2: Rewrite the Denominators Using the relation \(\alpha + \beta + \gamma = 0\), we can rewrite the terms in the denominators: - \(\alpha + \beta - \gamma = -\gamma\) - \(\beta + \gamma - \alpha = -\alpha\) - \(\gamma + \alpha - \beta = -\beta\) Thus, we can rewrite the expression as: \[ \frac{1}{-\gamma} + \frac{1}{-\alpha} + \frac{1}{-\beta} = -\left(\frac{1}{\gamma} + \frac{1}{\alpha} + \frac{1}{\beta}\right) \] ### Step 3: Combine the Fractions Now, we can combine the fractions: \[ -\left(\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}\right) = -\frac{\beta\gamma + \gamma\alpha + \alpha\beta}{\alpha\beta\gamma} \] ### Step 4: Substitute Values from Vieta's Formulas From Vieta's, we know: - \(\alpha\beta + \beta\gamma + \gamma\alpha = q\) - \(\alpha\beta\gamma = -r\) Substituting these values into the expression gives: \[ -\frac{q}{-r} = \frac{q}{r} \] ### Final Result Thus, the value of the expression is: \[ \frac{q}{r} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum (1)/( alpha )

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum alpha^3

If alpha , beta , gamma are the roots of the equation x^3 +px^2 +qx +r=0 then sum alpha^2 ( beta + gamma)=

If alpha , beta , gamma are the roots of x^3 + 2x^2 + 3x +8=0 then ( alpha + beta ) ( beta + gamma) ( gamma + alpha ) =

If alpha , beta , gamma are the roots of x^3 + px^2+qx -r=0 then alpha^2 + beta^2 + gamma^2 =

If alpha, beta ,gamma are roots of x^(3) + px^(2) + qx + r = 0 then sum (1)/(alpha^(2)) =

If alpha , beta , gamma are the roots of x^3 +qx +r=0 then sum ( beta + gamma )^(-1) =

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum alpha^2 beta + sum alpha beta ^2

If alpha , beta , gamma are the roots of x^3 + 3x^2 -4x +2=0 then the equation whose roots are (1)/( alpha beta) ,(1)/( beta gamma) ,(1)/( gamma alpha) is

cos alpha sin (beta-gamma) + cos beta sin (gamma-alpha) + cos gamma sin (alpha-beta)=