Home
Class 12
MATHS
If alpha , beta , gamma are roots o...

If ` alpha , beta , gamma ` are roots of the equation `x^3 + ax^2 + bx +c=0` then ` alpha^(-1) + beta^(-1) + gamma^(-1) =`

A

`a/c`

B

`-b/c`

C

`c/a`

D

`b/a`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression \( \alpha^{-1} + \beta^{-1} + \gamma^{-1} \) given that \( \alpha, \beta, \gamma \) are the roots of the polynomial equation \( x^3 + ax^2 + bx + c = 0 \). ### Step-by-step Solution: 1. **Understanding the Roots**: The roots of the polynomial \( x^3 + ax^2 + bx + c = 0 \) are \( \alpha, \beta, \gamma \). 2. **Using Vieta's Formulas**: According to Vieta's formulas for a cubic polynomial: - The sum of the roots \( \alpha + \beta + \gamma = -a \). - The sum of the products of the roots taken two at a time \( \alpha\beta + \beta\gamma + \gamma\alpha = b \). - The product of the roots \( \alpha\beta\gamma = -c \). 3. **Finding the Expression**: We want to find \( \alpha^{-1} + \beta^{-1} + \gamma^{-1} \). This can be rewritten using the common denominator: \[ \alpha^{-1} + \beta^{-1} + \gamma^{-1} = \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{\beta\gamma + \gamma\alpha + \alpha\beta}{\alpha\beta\gamma} \] 4. **Substituting Values**: From Vieta's formulas: - The numerator \( \beta\gamma + \gamma\alpha + \alpha\beta = b \). - The denominator \( \alpha\beta\gamma = -c \). Therefore, we can substitute these values into the expression: \[ \alpha^{-1} + \beta^{-1} + \gamma^{-1} = \frac{b}{-c} = -\frac{b}{c} \] 5. **Final Result**: Thus, the final result is: \[ \alpha^{-1} + \beta^{-1} + \gamma^{-1} = -\frac{b}{c} \] ### Answer: The answer is \( -\frac{b}{c} \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta, gamma are the roots of the equation x^(3) + ax^(2) + bx + c = 0, "then" alpha^(-1) + beta^(-1) + gamma^(-1)=

If alpha, beta, gamma are the roots of the equation x^(3) + x + 1 = 0 , then the value of alpha^(3) + beta^(3) + gamma^(3) , is

If alpha , beta , gamma are the roots of the equation x^3 +4x^2 -5x +3=0 then sum (1)/( alpha^2 beta^2)=

If alpha, beta, gamma are roots of the equation x^(3) + px^(2) + qx + r = 0 , then (alpha + beta) (beta + gamma)(gamma + alpha) =

If alpha,beta,gamma are the roots of the equation x^3 + 4x +1=0 then (alpha+beta)^(-1)+(beta+gamma)^(-1)+(gamma+alpha)^(-1)=

If alpah , beta , gamma are the roots of the equation x^3 + qx +r=0 find the value of ( beta + gamma )^(-1) +( gamma + alpha )^(-1) + ( alpha + beta)^(-1)

If alpha , beta , gamma are the roots of the equation x^3 +px^2 + qx +r=0 prove that ( alpha + beta ) ( beta + gamma) ( gamma + alpha ) =r-pq

If alpha, beta, gamma are the roots of the equation x^3 + px^2 + qx + r = n then the value of (alpha - 1/(beta gamma)) (beta -1/(gamma alpha)) (gamma-1/(alpha beta)) is:

if alpha, beta, gamma are the roots of the equation x^(3) + 3x + 2=0 " then " (alpha^(3) +beta^(3)+gamma^(3))/(alpha^(2) +beta^(2)+gamma^(2))

If alpha, beta ,gamma are the roots of the equation x ^(3) + 2x ^(2) - x+1 =0, then vlaue of ((2- alpha )(2-beta) (2-gamma))/((2+ alpha ) (2+ beta ) (2 + gamma)) is :