Home
Class 12
MATHS
If alpha , beta , gamma are the roots...

If ` alpha , beta , gamma ` are the roots of ` x^3 + px^2+qx -r=0` then ` alpha^2 + beta^2 + gamma^2 =`

A

`p^2 -2q`

B

`p^3 -3pq +3r`

C

`p^4 -3p^2 q +2q^2 `

D

`2q`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \alpha^2 + \beta^2 + \gamma^2 \) given that \( \alpha, \beta, \gamma \) are the roots of the polynomial equation \( x^3 + px^2 + qx - r = 0 \), we can use the relationships derived from Vieta's formulas. ### Step-by-step Solution: 1. **Identify the coefficients from the polynomial:** The given polynomial is \( x^3 + px^2 + qx - r = 0 \). From this, we can identify: - Coefficient of \( x^2 \) is \( p \) - Coefficient of \( x \) is \( q \) - Constant term is \( -r \) 2. **Use Vieta's Formulas:** According to Vieta's formulas: - The sum of the roots \( \alpha + \beta + \gamma = -\frac{\text{coefficient of } x^2}{\text{coefficient of } x^3} = -p \) - The sum of the products of the roots taken two at a time \( \alpha\beta + \beta\gamma + \alpha\gamma = \frac{\text{coefficient of } x}{\text{coefficient of } x^3} = q \) - The product of the roots \( \alpha\beta\gamma = -\frac{\text{constant term}}{\text{coefficient of } x^3} = r \) 3. **Find \( \alpha^2 + \beta^2 + \gamma^2 \):** We can express \( \alpha^2 + \beta^2 + \gamma^2 \) using the identity: \[ \alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \alpha\gamma) \] Substituting the values from Vieta's formulas: \[ \alpha^2 + \beta^2 + \gamma^2 = (-p)^2 - 2q \] 4. **Simplify the expression:** \[ \alpha^2 + \beta^2 + \gamma^2 = p^2 - 2q \] Thus, the final result is: \[ \alpha^2 + \beta^2 + \gamma^2 = p^2 - 2q \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum alpha^2

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum alpha^3

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum alpha^2 beta^2

If alpha , beta , gamma are the roots of the equation x^3 +px^2 +qx +r=0 then sum alpha^2 ( beta + gamma)=

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum (1)/( alpha )

If alpha, beta, gamma are the roiots of x^(3) - 10x^(2) +6x - 8 = 0 then alpha^(2) + beta^(2) + gamma^(2) =

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum alpha^2 beta + sum alpha beta ^2

If alpha, beta ,gamma are roots of x^(3) + px^(2) + qx + r = 0 then sum (1)/(alpha^(2)) =

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then the value of (1 + alpha^2) (1+ beta^2) (1+ gamma^2) is

If alpha , beta , gamma are the roots of x^3 + 2x^2 + 3x +8=0 then ( alpha + beta ) ( beta + gamma) ( gamma + alpha ) =