Home
Class 12
MATHS
If alpha , beta , gamma are the roots ...

If `alpha , beta , gamma ` are the roots of the equation `x^3 -6x^2 +11 x +6=0` then ` sum alpha^2 beta =`

A

80

B

94

C

90

D

`-84`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \sigma \alpha^2 \beta \) where \( \alpha, \beta, \gamma \) are the roots of the polynomial \( x^3 - 6x^2 + 11x + 6 = 0 \), we will follow these steps: ### Step 1: Identify the coefficients and roots The given polynomial is \( x^3 - 6x^2 + 11x + 6 = 0 \). According to Vieta's formulas: - The sum of the roots \( \alpha + \beta + \gamma = 6 \) (coefficient of \( x^2 \) with a negative sign). - The sum of the product of the roots taken two at a time \( \alpha\beta + \beta\gamma + \gamma\alpha = 11 \) (coefficient of \( x \)). - The product of the roots \( \alpha \beta \gamma = -6 \) (constant term with a negative sign). ### Step 2: Express \( \sigma \alpha^2 \beta \) We need to find \( \sigma \alpha^2 \beta = \alpha^2 \beta + \alpha \beta^2 + \beta^2 \gamma + \beta \gamma^2 + \gamma^2 \alpha + \gamma \alpha^2 \). ### Step 3: Group terms and factor We can group the terms as follows: \[ \sigma \alpha^2 \beta = \alpha \beta (\alpha + \beta) + \beta \gamma (\beta + \gamma) + \gamma \alpha (\gamma + \alpha) \] This can be rewritten as: \[ = \alpha \beta (6 - \gamma) + \beta \gamma (6 - \alpha) + \gamma \alpha (6 - \beta) \] ### Step 4: Substitute values Now substituting \( \alpha + \beta = 6 - \gamma \), \( \beta + \gamma = 6 - \alpha \), and \( \gamma + \alpha = 6 - \beta \): \[ = \alpha \beta (6 - \gamma) + \beta \gamma (6 - \alpha) + \gamma \alpha (6 - \beta) \] Expanding this gives: \[ = 6(\alpha \beta + \beta \gamma + \gamma \alpha) - (\alpha \beta \gamma + \beta \gamma \alpha + \gamma \alpha \beta) \] ### Step 5: Substitute known values We know: - \( \alpha \beta + \beta \gamma + \gamma \alpha = 11 \) - \( \alpha \beta \gamma = -6 \) Substituting these values: \[ = 6(11) - 3(\alpha \beta \gamma) = 66 - 3(-6) = 66 + 18 = 84 \] ### Final Answer Thus, the value of \( \sigma \alpha^2 \beta \) is \( 84 \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha , beta , gamma are the roots of the equation x^3 +4x^2 -5x +3=0 then sum (1)/( alpha^2 beta^2)=

If alpha , beta , gamma are the roots of the equation x^3 +px^2 +qx +r=0 then sum alpha^2 ( beta + gamma)=

If alpha, beta, gamma are the roots of the equation x^3 + px^2 + qx + r = n then the value of (alpha - 1/(beta gamma)) (beta -1/(gamma alpha)) (gamma-1/(alpha beta)) is:

If alpha, beta, gamma are the roots of the equation x^(3) + x + 1 = 0 , then the value of alpha^(3) + beta^(3) + gamma^(3) , is

If alpha, beta, gamma are the roots of the equation x^(3) + ax^(2) + bx + c = 0, "then" alpha^(-1) + beta^(-1) + gamma^(-1)=

If alpha, beta ,gamma are the roots of the equation x ^(3) + 2x ^(2) - x+1 =0, then vlaue of ((2- alpha )(2-beta) (2-gamma))/((2+ alpha ) (2+ beta ) (2 + gamma)) is :

If alpha, beta and gamma are the roots of the equation x^(3)-px^(2)+qx-r=0 , then the value of alpha^(2)beta+alpha^(2)gamma+beta^(2)alpha+beta^(2)gamma+gamma^(2)alpha+gamma^(2)beta is equal to

If alpha, beta and gamma are the roots of the equation x^(3)-px^(2)+qx-r=0 , then the value of (alphabeta)/(gamma)+(betagamma)/(alpha)+(gammaalpha)/(beta) is equal to

If alpha , beta , gamma are roots of the equation x^3 + ax^2 + bx +c=0 then alpha^(-1) + beta^(-1) + gamma^(-1) =

If alpha , beta , gamma are the roots of the equation x^3 +px^2 + qx +r=0 then the coefficient of x in cubic equation whose roots are alpha ( beta + gamma ) , beta ( gamma + alpha) and gamma ( alpha + beta) is