Home
Class 12
MATHS
If alpha , beta , gamma are the ro...

If ` alpha , beta , gamma ` are the roots of the equation `x^3 +px^2 +qx +r=0` then ` sum alpha^2 ( beta + gamma)=`

A

`p^2 -2q`

B

`-p^3 +3pq -3r`

C

`p^4 -4p^2 q+4pr +2q^2`

D

`3r-pq`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \sum \alpha^2 (\beta + \gamma) \) where \( \alpha, \beta, \gamma \) are the roots of the equation \( x^3 + px^2 + qx + r = 0 \), we can follow these steps: ### Step 1: Use Vieta's Formulas From Vieta's formulas, we know: - \( \alpha + \beta + \gamma = -p \) - \( \alpha\beta + \beta\gamma + \gamma\alpha = q \) - \( \alpha\beta\gamma = -r \) ### Step 2: Express \( \sum \alpha^2 (\beta + \gamma) \) We can rewrite the expression \( \sum \alpha^2 (\beta + \gamma) \) as: \[ \sum \alpha^2 (\beta + \gamma) = \alpha^2 (\beta + \gamma) + \beta^2 (\alpha + \gamma) + \gamma^2 (\alpha + \beta) \] Notice that \( \beta + \gamma = -p - \alpha \), \( \alpha + \gamma = -p - \beta \), and \( \alpha + \beta = -p - \gamma \). ### Step 3: Substitute the Values Substituting these into the expression gives: \[ = \alpha^2 (-p - \alpha) + \beta^2 (-p - \beta) + \gamma^2 (-p - \gamma) \] This simplifies to: \[ = -p(\alpha^2 + \beta^2 + \gamma^2) - (\alpha^3 + \beta^3 + \gamma^3) \] ### Step 4: Find \( \alpha^2 + \beta^2 + \gamma^2 \) We can find \( \alpha^2 + \beta^2 + \gamma^2 \) using the identity: \[ \alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \gamma\alpha) \] Substituting the values from Vieta's: \[ = (-p)^2 - 2q = p^2 - 2q \] ### Step 5: Find \( \alpha^3 + \beta^3 + \gamma^3 \) Using the identity for the sum of cubes: \[ \alpha^3 + \beta^3 + \gamma^3 = 3\alpha\beta\gamma + (\alpha + \beta + \gamma)(\alpha^2 + \beta^2 + \gamma^2) \] Substituting the values we have: \[ = 3(-r) + (-p)(p^2 - 2q) = -3r - p(p^2 - 2q) \] ### Step 6: Combine Everything Now substituting back into our expression: \[ \sum \alpha^2 (\beta + \gamma) = -p(p^2 - 2q) + 3r + 3r \] This simplifies to: \[ = -p(p^2 - 2q) + 3r \] ### Final Expression Thus, the final expression for \( \sum \alpha^2 (\beta + \gamma) \) is: \[ \sum \alpha^2 (\beta + \gamma) = 3r - pq \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha , beta , gamma are the roots of the equation x^3 -6x^2 +11 x +6=0 then sum alpha^2 beta =

If alpha , beta , gamma are the roots of the equation x^3 +4x^2 -5x +3=0 then sum (1)/( alpha^2 beta^2)=

If alpha, beta, gamma are the roots of the equation x^3 + px^2 + qx + r = n then the value of (alpha - 1/(beta gamma)) (beta -1/(gamma alpha)) (gamma-1/(alpha beta)) is:

If alpha , beta , gamma are the roots of the equation x^3 +px^2 + qx +r=0 prove that ( alpha + beta ) ( beta + gamma) ( gamma + alpha ) =r-pq

If alpha, beta, gamma are roots of the equation x^(3) + px^(2) + qx + r = 0 , then (alpha + beta) (beta + gamma)(gamma + alpha) =

If alpha, beta, gamma are the roots of the equation x^(3) + ax^(2) + bx + c = 0, "then" alpha^(-1) + beta^(-1) + gamma^(-1)=

If alpha, beta, gamma are the roots of the equation x^(3) + x + 1 = 0 , then the value of alpha^(3) + beta^(3) + gamma^(3) , is

If alpha, beta ,gamma are the roots of the equation x ^(3) + 2x ^(2) - x+1 =0, then vlaue of ((2- alpha )(2-beta) (2-gamma))/((2+ alpha ) (2+ beta ) (2 + gamma)) is :

If alpha , beta , gamma are roots of the equation x^3 + ax^2 + bx +c=0 then alpha^(-1) + beta^(-1) + gamma^(-1) =

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum alpha^2 beta + sum alpha beta ^2