Home
Class 12
MATHS
If f(x) =x^4 + 3x ^2 - 6x -2 then th...

If `f(x) =x^4 + 3x ^2 - 6x -2 ` then the coefficient of ` x^3 ` in ` f(x +1)` is

A

24

B

`-24`

C

`4`

D

`-4`

Text Solution

AI Generated Solution

The correct Answer is:
To find the coefficient of \( x^3 \) in \( f(x + 1) \) where \( f(x) = x^4 + 3x^2 - 6x - 2 \), we will follow these steps: ### Step 1: Substitute \( x + 1 \) into the function \( f(x) \) We start by substituting \( x + 1 \) into the function \( f(x) \): \[ f(x + 1) = (x + 1)^4 + 3(x + 1)^2 - 6(x + 1) - 2 \] ### Step 2: Expand each term Now we will expand each term separately. 1. **Expand \( (x + 1)^4 \)** using the binomial theorem: \[ (x + 1)^4 = x^4 + 4x^3 + 6x^2 + 4x + 1 \] 2. **Expand \( 3(x + 1)^2 \)**: \[ 3(x + 1)^2 = 3(x^2 + 2x + 1) = 3x^2 + 6x + 3 \] 3. **Expand \( -6(x + 1) \)**: \[ -6(x + 1) = -6x - 6 \] 4. **The constant term remains as it is**: \[ -2 \] ### Step 3: Combine all the expanded terms Now we combine all the expanded terms: \[ f(x + 1) = (x^4 + 4x^3 + 6x^2 + 4x + 1) + (3x^2 + 6x + 3) - (6x + 6) - 2 \] Combining like terms: - **For \( x^4 \)**: \( x^4 \) - **For \( x^3 \)**: \( 4x^3 \) - **For \( x^2 \)**: \( 6x^2 + 3x^2 = 9x^2 \) - **For \( x \)**: \( 4x + 6x - 6x = 4x \) - **Constant terms**: \( 1 + 3 - 6 - 2 = -4 \) So, we have: \[ f(x + 1) = x^4 + 4x^3 + 9x^2 + 4x - 4 \] ### Step 4: Identify the coefficient of \( x^3 \) From the final expression, we can see that the coefficient of \( x^3 \) is \( 4 \). ### Final Answer The coefficient of \( x^3 \) in \( f(x + 1) \) is \( \boxed{4} \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) =x^3 +x^2 +x+1 then the coefficient of x in f(x+5) is

Let f(x) = 1 - x +x^2-x^3+......+x^16+x^17 , then coefficient of x^2 in f(x-1) is?

If f(x)=|[x-2, (x-1)^2, x^3] , [(x-1), x^2, (x+1)^3] , [x,(x+1)^2, (x+2)^3]| then coefficient of x in f(x) is

If f(x) = x^2 - 3x + 4 , then find the values of x satisfying the equation f(x) = f(2x + 1) .

If f (x) = (x ^(2) - 3x +4)/(x ^(2)+ 3x +4), then complete solution of 0lt f (x) lt 1, is :

f(x)=x^2+1/(x^2)-6x-6/x+2 then min value of f(x)

If f(x)=2x^(6)+3x^(4)+4x^(2) , then f'(x) is

The coefficient of x^24 in (1+3x+6x^2 + 10x^3 + ……oo)^(2//3) is

If f'(x) = 1/x + x^2 and f(1)=4/3 then find the value of f(x)

If f(x)=3x^(4)+4x^(3)-12x^(2)+12 , then f(x) is