Home
Class 12
MATHS
The equation whose roots are those ...

The equation whose roots are those of equation ` x^4 - 3x^3 +5x^2 -2=0` with contrary sign is

A

`x^4 +3x^3 +5x^2 -2=0`

B

`x^4 +3x^3 +x^2 +7x -2=0`

C

`x^4 -3x^3 +8x ^2 +4=0`

D

`10x^4 -13x^2 +40=0`

Text Solution

AI Generated Solution

The correct Answer is:
To find the equation whose roots are the contrary (opposite) of the roots of the given equation \( x^4 - 3x^3 + 5x^2 - 2 = 0 \), we can follow these steps: ### Step 1: Identify the given equation The given equation is: \[ x^4 - 3x^3 + 5x^2 - 2 = 0 \] ### Step 2: Understand the meaning of "contrary sign" The phrase "contrary sign" means that if \( r \) is a root of the original equation, then \( -r \) will be a root of the new equation. This will affect the odd-degree terms (the terms with \( x^3 \) and \( x^1 \)) in the polynomial. ### Step 3: Change the signs of the odd-degree terms The original polynomial has the following terms: - \( x^4 \) (even degree, remains the same) - \( -3x^3 \) (odd degree, change the sign to \( +3x^3 \)) - \( 5x^2 \) (even degree, remains the same) - \( -2 \) (constant term, remains the same) Thus, the new polynomial will be: \[ x^4 + 3x^3 + 5x^2 - 2 = 0 \] ### Step 4: Write the final equation The equation whose roots are the contrary of the roots of the given equation is: \[ x^4 + 3x^3 + 5x^2 - 2 = 0 \] ### Final Answer The required equation is: \[ x^4 + 3x^3 + 5x^2 - 2 = 0 \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the equation whose roots are those of the equation x^7 + 3x^5 +x^3 -x^2 +7x +2 =0 with contrary signs .

The equation whose roots are double the roots of the equation x^(2) + 6x + 3 = 0 is

The equation whose roots are half of roots of the equation 2x^(2) + 5x + 4= 0 is

Find the equation whose roots are 3 times the roots of the equation x^(2)-5x+6=0

Find the equation whose roots are 3 times the roots of 6x^4 -7x^3 +8x^2 -7x +2=0

The equation whose roots are multiplied by 3 of those of 2x^(3) - 3x^(2) + 4x - 5 = 0 is

Find the equation whose roots are squares of the roots of x^4 +x^3 +2x^2 +x +1=0

The equation whose roots are squares of the roots of x^3 + 2x ^2 -x +3=0 is

Find the equation whose roots are the cubes of the roots x^3 +3x^2 +2=0

The equation whose roots are cubes of the roots x^3 +2x^2 +3=0 is