Home
Class 12
MATHS
If alpha , beta , gamma are the roo...

If ` alpha , beta , gamma ` are the roots of ` x^3 +x^2 + 2x +3=0` where `a+b+c = -2` , `ab+bc+ca=3`, `abc=1` then the equation whose roots ` beta + gamma , gamma + alpha , alpha + beta ` is

A

`x^3 +2x^2 -3x +1=0`

B

`x^3 +2x^2 +3x +1=0`

C

`x^3 +2x^2 +3x +1=0`

D

`x^3 +2x^2 +3x -1=0`

Text Solution

AI Generated Solution

The correct Answer is:
To find the equation whose roots are \( \beta + \gamma, \gamma + \alpha, \alpha + \beta \) given that \( \alpha, \beta, \gamma \) are the roots of the polynomial \( x^3 + x^2 + 2x + 3 = 0 \), we can follow these steps: ### Step 1: Identify the sums of the roots From Vieta's formulas, we know: - The sum of the roots \( \alpha + \beta + \gamma = -\frac{\text{coefficient of } x^2}{\text{coefficient of } x^3} = -1 \). - The sum of the products of the roots taken two at a time \( \alpha\beta + \beta\gamma + \gamma\alpha = \frac{\text{coefficient of } x}{\text{coefficient of } x^3} = 2 \). - The product of the roots \( \alpha\beta\gamma = -\frac{\text{constant term}}{\text{coefficient of } x^3} = -3 \). ### Step 2: Calculate the new roots Let: - \( a = \beta + \gamma \) - \( b = \gamma + \alpha \) - \( c = \alpha + \beta \) Now, we can express the sums and products of \( a, b, c \): - \( a + b + c = (\beta + \gamma) + (\gamma + \alpha) + (\alpha + \beta) = 2(\alpha + \beta + \gamma) = 2(-1) = -2 \) - \( ab + bc + ca = (\beta + \gamma)(\gamma + \alpha) + (\gamma + \alpha)(\alpha + \beta) + (\alpha + \beta)(\beta + \gamma) \) Calculating \( ab + bc + ca \): \[ ab = (\beta + \gamma)(\gamma + \alpha) = \beta\gamma + \beta\alpha + \gamma^2 + \gamma\alpha \] \[ bc = (\gamma + \alpha)(\alpha + \beta) = \gamma\alpha + \gamma\beta + \alpha^2 + \alpha\beta \] \[ ca = (\alpha + \beta)(\beta + \gamma) = \alpha\beta + \alpha\gamma + \beta^2 + \beta\gamma \] Combining these: \[ ab + bc + ca = (\beta\gamma + \gamma\alpha + \alpha\beta) + (\beta\alpha + \beta^2 + \beta\gamma) + (\gamma^2 + \gamma\alpha + \alpha^2) \] This simplifies to: \[ = 2(\alpha\beta + \beta\gamma + \gamma\alpha) + (\alpha^2 + \beta^2 + \gamma^2) \] Using \( \alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \gamma\alpha) \): \[ = (-1)^2 - 2(2) = 1 - 4 = -3 \] Thus, \[ ab + bc + ca = 2(2) - 3 = 4 - 3 = 1 \] ### Step 3: Calculate the product of the roots The product \( abc \) is given by: \[ abc = (\beta + \gamma)(\gamma + \alpha)(\alpha + \beta) = \alpha\beta\gamma + \text{(other terms)} \] Using Vieta's, we find: \[ abc = -3 + 1 = -2 \] ### Step 4: Form the new polynomial Now we have: - \( a + b + c = -2 \) - \( ab + bc + ca = 1 \) - \( abc = -2 \) The polynomial whose roots are \( a, b, c \) can be formed as: \[ x^3 - (a+b+c)x^2 + (ab+bc+ca)x - abc = 0 \] Substituting the values: \[ x^3 - (-2)x^2 + (1)x - (-2) = 0 \] This simplifies to: \[ x^3 + 2x^2 + x + 2 = 0 \] ### Final Answer The equation whose roots are \( \beta + \gamma, \gamma + \alpha, \alpha + \beta \) is: \[ \boxed{x^3 + 2x^2 + x + 2 = 0} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha , beta , gamma are the roots of x^3 + px^2+qx -r=0 then alpha^2 + beta^2 + gamma^2 =

If alpha , beta , gamma are the roots of x^3 +qx +r=0 then sum ( beta + gamma )^(-1) =

If alpha , beta , gamma are the roots of x^3 +2x^2 +3x +8=0 then (3-alpha )(3 - beta) (3-gamma) =

If alpha , beta, gamma are the roots of x^3+x^2-5x-1=0 then alpha+beta+gamma is equal to

If alpha , beta , gamma are the roots of the equation x^3 -6x^2 +11 x +6=0 then sum alpha^2 beta =

If alpha, beta ,gamma are roots of x^(3) + px^(2) + qx + r = 0 then sum (1)/(alpha^(2)) =

If alpha , beta , gamma are the roots of the equation x^3 +px^2 + qx +r=0 then the coefficient of x in cubic equation whose roots are alpha ( beta + gamma ) , beta ( gamma + alpha) and gamma ( alpha + beta) is

If alpha , beta , gamma are the roots of the equation x^3 +px^2 +qx +r=0 then sum alpha^2 ( beta + gamma)=

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum alpha^2 beta + sum alpha beta ^2

If alpha , beta , gamma are the roots of x^3 + 2x^2 + 3x +8=0 then ( alpha + beta ) ( beta + gamma) ( gamma + alpha ) =