Home
Class 12
MATHS
If alpha , beta , gamma are the roo...

If ` alpha , beta , gamma ` are the roots of ` x^3 +2x^2 +3x +8=0` then ` (3-alpha )(3 - beta) (3-gamma)`=

A

52

B

62

C

65

D

67

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( (3 - \alpha)(3 - \beta)(3 - \gamma) \) where \( \alpha, \beta, \gamma \) are the roots of the polynomial \( x^3 + 2x^2 + 3x + 8 = 0 \). ### Step 1: Identify the coefficients The polynomial can be expressed in the standard form \( ax^3 + bx^2 + cx + d = 0 \). Here, we have: - \( a = 1 \) - \( b = 2 \) - \( c = 3 \) - \( d = 8 \) ### Step 2: Use Vieta's formulas From Vieta's formulas, we know: - \( \alpha + \beta + \gamma = -\frac{b}{a} = -\frac{2}{1} = -2 \) - \( \alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a} = \frac{3}{1} = 3 \) - \( \alpha\beta\gamma = -\frac{d}{a} = -\frac{8}{1} = -8 \) ### Step 3: Expand \( (3 - \alpha)(3 - \beta)(3 - \gamma) \) We can expand this expression: \[ (3 - \alpha)(3 - \beta)(3 - \gamma) = 3^3 - 3^2(\alpha + \beta + \gamma) + 3(\alpha\beta + \beta\gamma + \gamma\alpha) - \alpha\beta\gamma \] ### Step 4: Substitute the values from Vieta's Now, substituting the values we found using Vieta's: - \( 3^3 = 27 \) - \( 3^2(\alpha + \beta + \gamma) = 9(-2) = -18 \) - \( 3(\alpha\beta + \beta\gamma + \gamma\alpha) = 3(3) = 9 \) - \( -\alpha\beta\gamma = -(-8) = 8 \) ### Step 5: Combine the results Now, we combine all these results: \[ (3 - \alpha)(3 - \beta)(3 - \gamma) = 27 - (-18) + 9 + 8 \] \[ = 27 + 18 + 9 + 8 \] \[ = 62 \] ### Final Answer Thus, the value of \( (3 - \alpha)(3 - \beta)(3 - \gamma) \) is \( 62 \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha , beta , gamma are the roots of x^3 + 2x^2 + 3x +8=0 then ( alpha + beta ) ( beta + gamma) ( gamma + alpha ) =

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum (1)/( alpha )

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum alpha^3

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum alpha^2

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum alpha^2 beta^2

If alpha, beta, gamma are the roiots of x^(3) - 10x^(2) +6x - 8 = 0 then alpha^(2) + beta^(2) + gamma^(2) =

If alpha ,beta and gamma are the roots of x^3-2x^2+3x-4 =0 , then find sumalpha^2beta^2

If alpha , beta , gamma are the roots of x^3 -3x^2 +3x+7=0 then show that (alpha-1)/( beta-1) +(beta -1)/(gamma -1) +(gamma -1)/( alpha-1) = 3 omega where omega is complex cube of unity .

If alpha , beta , gamma are the roots of the equation x^3 +px^2 +qx +r=0 then sum alpha^2 ( beta + gamma)=

If alpha , beta , gamma are the roots of the equation x^3 -6x^2 +11 x +6=0 then sum alpha^2 beta =