Home
Class 12
MATHS
sum (1)/(alpha^2 beta^2)...

`sum (1)/(alpha^2 beta^2) `

A

`(q^2 -2pr)/(r^2)`

B

`q^3 -3pqr + 3r^2`

C

`(p^2 - 2q)/( r^2)`

D

` (pq)/( r-3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to find the expression for the summation \( \sum \frac{1}{\alpha^2 \beta^2} \), where \( \alpha, \beta, \gamma \) are the roots of a cubic equation. Let's go through the steps systematically. ### Step-by-Step Solution 1. **Understanding the Expression**: The expression we need to evaluate is \( \sum \frac{1}{\alpha^2 \beta^2} \). This can be rewritten as: \[ \sum \frac{1}{\alpha^2 \beta^2} = \frac{1}{\alpha^2 \beta^2} + \frac{1}{\beta^2 \gamma^2} + \frac{1}{\gamma^2 \alpha^2} \] 2. **Finding a Common Denominator**: The common denominator for the fractions is \( \alpha^2 \beta^2 \gamma^2 \). Thus, we can express the summation as: \[ \sum \frac{1}{\alpha^2 \beta^2} = \frac{\gamma^2 + \alpha^2 + \beta^2}{\alpha^2 \beta^2 \gamma^2} \] 3. **Using the Relationship Between Roots and Coefficients**: For a cubic equation \( x^3 + p_1 x^2 + p_2 x + p_3 = 0 \), we have the following relationships: - \( \alpha + \beta + \gamma = -p_1 \) - \( \alpha \beta + \beta \gamma + \gamma \alpha = p_2 \) - \( \alpha \beta \gamma = -p_3 \) 4. **Calculating \( \alpha^2 + \beta^2 + \gamma^2 \)**: We can express \( \alpha^2 + \beta^2 + \gamma^2 \) using the identity: \[ \alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha \beta + \beta \gamma + \gamma \alpha) \] Substituting the relationships: \[ \alpha^2 + \beta^2 + \gamma^2 = (-p_1)^2 - 2p_2 = p_1^2 - 2p_2 \] 5. **Substituting Back into the Summation**: Now substituting \( \alpha^2 + \beta^2 + \gamma^2 \) back into our expression: \[ \sum \frac{1}{\alpha^2 \beta^2} = \frac{p_1^2 - 2p_2}{\alpha^2 \beta^2 \gamma^2} \] 6. **Expressing \( \alpha^2 \beta^2 \gamma^2 \)**: We know \( \alpha^2 \beta^2 \gamma^2 = (\alpha \beta \gamma)^2 = (-p_3)^2 = p_3^2 \). 7. **Final Expression**: Thus, we can write: \[ \sum \frac{1}{\alpha^2 \beta^2} = \frac{p_1^2 - 2p_2}{p_3^2} \] ### Final Answer The final result for the summation \( \sum \frac{1}{\alpha^2 \beta^2} \) is: \[ \sum \frac{1}{\alpha^2 \beta^2} = \frac{p_1^2 - 2p_2}{p_3^2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta ,gamma are roots of x^(3) + px^(2) + qx + r = 0 then sum (1)/(alpha^(2)) =

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum alpha^2 beta^2

If alpha, beta are the roots of the quadratic equation cx^2- 2bx + 4a = 0 then find the quadratic equation whose roots are: (i) alpha/2, beta/2 , (ii) alpha^(2), beta^(2) , (iii) alpha + 1, beta+1 , (iv) (1+alpha)/(1-alpha) (1+beta)/(1-beta) , (v) alpha/beta, beta/alpha

If alpha and beta are the roots of the equation x^2+4x + 1=0(alpha > beta) then find the value of 1/(alpha)^2 + 1/(beta)^2

If alpha and beta are the roots of the quadratic equation ax^(2)+bx+1 , then the value of (1)/(alpha beta)+(alpha+beta) is

If alpha , beta , gamma are the roots of the equation x^3 -6x^2 +11 x +6=0 then sum alpha^2 beta =

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum alpha^2 beta + sum alpha beta ^2

If alpha and beta are zeroes of a quadratic polynomial ax^(2)+bx+c . Find the value of: (i) alpha^(2)-beta^(2) (ii) alpha^(3)+beta^(3) (iii) alpha^(4)beta+beta^(4)alpha (iv) sqrt((alpha)/(beta))+sqrt((beta)/(alpha)) (v) (alpha^(2))/(beta)+(beta^(2))/(alpha) (alpha^(-1)+(1)/(alpha^(-1)))(beta^(-1)+(1)/(beta^(-1)))

The value of (alpha^3)/2cos e c^2(1/2tan^(-1)alpha/beta)+(beta^3)/2sec^2(1/2tan^(-1)(beta/alpha))i se q u a lto (alpha+beta)(alpha^2+beta^2) (b) (alpha+beta)(alpha^2-beta^2) (alpha+beta)(alpha^2+beta^2) (d) none of these

Prove that: (alpha^3)/2cos e c^2(1/2tan^(-1)(alpha/beta))+(beta^3)/2s e c^2(1/2tan^(-1)(beta/alpha))=(alpha+beta)(alpha^2+beta^2) .