Home
Class 12
MATHS
If f(x) =5x^3 +4x^2 - 13 x-25 and f(...

If `f(x) =5x^3 +4x^2 - 13 x-25` and ` f(x-3) = 5x^3 - 41 x^2 + 98 x + k ` then ` k=`

A

85

B

`-85`

C

`105`

D

`-105`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( k \) in the given equations, we will follow these steps: ### Step 1: Write down the functions We have two functions: 1. \( f(x) = 5x^3 + 4x^2 - 13x - 25 \) 2. \( f(x-3) = 5x^3 - 41x^2 + 98x + k \) ### Step 2: Set up the equation for \( k \) From the problem statement, we know that: \[ k = f(-3) \] This means we need to calculate \( f(-3) \) using the first function. ### Step 3: Calculate \( f(-3) \) Substituting \( x = -3 \) into \( f(x) \): \[ f(-3) = 5(-3)^3 + 4(-3)^2 - 13(-3) - 25 \] ### Step 4: Simplify the expression Calculating each term: - \( (-3)^3 = -27 \) so \( 5(-27) = -135 \) - \( (-3)^2 = 9 \) so \( 4(9) = 36 \) - \( -13(-3) = 39 \) - The constant term is \( -25 \) Now, substituting these values back into the equation: \[ f(-3) = -135 + 36 + 39 - 25 \] ### Step 5: Combine the terms Now, we will combine the terms step by step: 1. Combine \( -135 + 36 = -99 \) 2. Then, \( -99 + 39 = -60 \) 3. Finally, \( -60 - 25 = -85 \) Thus, we find: \[ f(-3) = -85 \] ### Step 6: Substitute back to find \( k \) Since \( k = f(-3) \): \[ k = -85 \] ### Final Answer The value of \( k \) is: \[ \boxed{-85} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=3x^4-5x^2+9, find f(x-1) .

If f(x)=5x^2 -3 and f(x+a)=5x^2 + 30x + 42 , what is the value of a ?

Range of f(x) = ln(3x^2-4x+5) is

If f(x)=x^(3)-4x+8 , then f(5)=

Find f ' (x) if f(x)=2x^3-5x^2-4x+3 ,

If f(x)=x^(2) + 5x-3 , then evaluate f(4)

If f(x)= x^(3)-kx^(2)+2x and f(-x)= -f(x), the value of k is_

If f(x) = (x - 1)(x - 2)(x - 3)(x - 4)(x - 5) , then the value of f' (5) is equal to

If A = [[-4,1],[3,2]] find f(A) if f(x) =x^2 - 2x+3

The function f(x) is defined as follows: {:(,f(x) = x^(2) -1 , if x le 3),(,f(x) = 2x + 2 , if 3 lt x le 9),(,f(x) = 4x - 8, if x gt 9):} What is the value of k if f(f(f(3))) = (k+1)^(2) where k is positive integer ?