Home
Class 12
MATHS
If alpha , beta , gamma are the ro...

If ` alpha , beta , gamma ` are the roots of the equation `x^3 +px^2 + qx +r=0` then the coefficient of x in cubic equation whose roots are
` alpha ( beta + gamma ) , beta ( gamma + alpha) and gamma ( alpha + beta)` is

A

2q

B

`q^2 +pr`

C

`p^2 -qr`

D

`r(pq-r)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the coefficient of \( x \) in the cubic equation whose roots are \( \alpha (\beta + \gamma) \), \( \beta (\gamma + \alpha) \), and \( \gamma (\alpha + \beta) \), given that \( \alpha, \beta, \gamma \) are the roots of the equation \( x^3 + px^2 + qx + r = 0 \). ### Step 1: Identify the roots The roots of the new cubic equation are: - \( L = \alpha (\beta + \gamma) \) - \( M = \beta (\gamma + \alpha) \) - \( N = \gamma (\alpha + \beta) \) ### Step 2: Use Vieta's Formulas From the original cubic equation \( x^3 + px^2 + qx + r = 0 \), we can use Vieta's formulas: 1. \( \alpha + \beta + \gamma = -p \) 2. \( \alpha\beta + \beta\gamma + \gamma\alpha = q \) 3. \( \alpha\beta\gamma = -r \) ### Step 3: Calculate \( L + M + N \) We calculate: \[ L + M + N = \alpha(\beta + \gamma) + \beta(\gamma + \alpha) + \gamma(\alpha + \beta) \] Using \( \beta + \gamma = -p - \alpha \) (from Vieta's): \[ L + M + N = \alpha(-p - \alpha) + \beta(-p - \beta) + \gamma(-p - \gamma) \] This simplifies to: \[ = -p(\alpha + \beta + \gamma) - (\alpha^2 + \beta^2 + \gamma^2) \] Using \( \alpha + \beta + \gamma = -p \): \[ = -p(-p) - (\alpha^2 + \beta^2 + \gamma^2) = p^2 - (\alpha^2 + \beta^2 + \gamma^2) \] ### Step 4: Calculate \( \alpha^2 + \beta^2 + \gamma^2 \) Using the identity: \[ \alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \gamma\alpha) \] Substituting the values: \[ = (-p)^2 - 2q = p^2 - 2q \] Thus, \[ L + M + N = p^2 - (p^2 - 2q) = 2q \] ### Step 5: Calculate \( LM + MN + NL \) Next, we find \( LM + MN + NL \): \[ LM = \alpha(\beta + \gamma) \cdot \beta(\gamma + \alpha) = \alpha\beta(\beta\gamma + \alpha\beta + \gamma\alpha) \] Using \( \beta\gamma + \alpha\beta + \gamma\alpha = q \): \[ LM = \alpha\beta q \] Similarly, we can derive: \[ MN = \beta\gamma q \quad \text{and} \quad NL = \gamma\alpha q \] Thus, \[ LM + MN + NL = q(\alpha\beta + \beta\gamma + \gamma\alpha) = q \cdot q = q^2 \] ### Step 6: Calculate \( LMN \) Finally, we calculate \( LMN \): \[ LMN = \alpha(\beta + \gamma) \cdot \beta(\gamma + \alpha) \cdot \gamma(\alpha + \beta) \] This can be expressed as: \[ = \alpha\beta\gamma \cdot (\beta + \gamma)(\gamma + \alpha)(\alpha + \beta) \] Using \( \alpha\beta\gamma = -r \) and expanding the product of sums, we can derive: \[ LMN = -r \cdot \text{(some expression)} \] ### Step 7: Form the cubic equation The cubic equation with roots \( L, M, N \) is: \[ x^3 - (L + M + N)x^2 + (LM + MN + NL)x - LMN = 0 \] The coefficient of \( x \) is \( LM + MN + NL \), which we found to be \( q^2 \). ### Final Answer The coefficient of \( x \) in the cubic equation is: \[ \boxed{q^2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha , beta , gamma are the roots of the equation x^3 -6x^2 +11 x +6=0 then sum alpha^2 beta =

If alpha , beta , gamma are the roots of the equation x^3 +px^2 +qx +r=0 then sum alpha^2 ( beta + gamma)=

If alpha , beta , gamma are the roots of the equation x^3 +4x^2 -5x +3=0 then sum (1)/( alpha^2 beta^2)=

If alpha , beta , gamma are roots of the equation x^3 + ax^2 + bx +c=0 then alpha^(-1) + beta^(-1) + gamma^(-1) =

If alpha , beta , gamma are the roots of x^3 -3x +1=0 then the equation whose roots are alpha - (1)/( beta gamma) , beta - (1)/( gamma alpha ) , gamma - (1)/( alpha beta ) is

If alpha , beta , gamma are the roots of x^3 + px^2+qx -r=0 then alpha^2 + beta^2 + gamma^2 =

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum (1)/( alpha )

If alpha, beta, gamma are the roots of the equation x^(2)=px^(2)+qx-r=0, then the value of sum(alphabeta)/(gamma) is equal to

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum alpha^2 beta^2

If alpha, beta, gamma are the roots of the equation x^(3) + x + 1 = 0 , then the value of alpha^(3) + beta^(3) + gamma^(3) , is