Home
Class 12
MATHS
If alpha , beta , gamma are the ro...

If ` alpha , beta , gamma ` are the roots of ` x^3 +px^2 +qx +r=0` then the value of `(1 + alpha^2) (1+ beta^2) (1+ gamma^2)` is

A

`(r+p)^2 +(q+1)^2`

B

`(r-p)^2 + (q-1)^2`

C

`(1+p)^2 +(1 +q)^2`

D

`(r-p)^2 +(r -q)^2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( (1 + \alpha^2)(1 + \beta^2)(1 + \gamma^2) \) where \( \alpha, \beta, \gamma \) are the roots of the polynomial \( x^3 + px^2 + qx + r = 0 \), we can follow these steps: ### Step 1: Understand the expression We need to evaluate the product \( (1 + \alpha^2)(1 + \beta^2)(1 + \gamma^2) \). We can expand this expression using the distributive property. ### Step 2: Expand the expression The expression can be expanded as follows: \[ (1 + \alpha^2)(1 + \beta^2)(1 + \gamma^2) = 1 + (\alpha^2 + \beta^2 + \gamma^2) + (\alpha^2 \beta^2 + \beta^2 \gamma^2 + \gamma^2 \alpha^2) + \alpha^2 \beta^2 \gamma^2 \] ### Step 3: Use Vieta's Formulas From Vieta's formulas, we know: - \( \alpha + \beta + \gamma = -p \) - \( \alpha \beta + \beta \gamma + \gamma \alpha = q \) - \( \alpha \beta \gamma = -r \) To find \( \alpha^2 + \beta^2 + \gamma^2 \), we can use the identity: \[ \alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha \beta + \beta \gamma + \gamma \alpha) \] Substituting the values from Vieta's: \[ \alpha^2 + \beta^2 + \gamma^2 = (-p)^2 - 2q = p^2 - 2q \] ### Step 4: Calculate \( \alpha^2 \beta^2 + \beta^2 \gamma^2 + \gamma^2 \alpha^2 \) Using the identity: \[ \alpha^2 \beta^2 + \beta^2 \gamma^2 + \gamma^2 \alpha^2 = (\alpha \beta + \beta \gamma + \gamma \alpha)^2 - 2\alpha \beta \gamma(\alpha + \beta + \gamma) \] Substituting the values from Vieta's: \[ \alpha^2 \beta^2 + \beta^2 \gamma^2 + \gamma^2 \alpha^2 = q^2 - 2(-r)(-p) = q^2 - 2pr \] ### Step 5: Calculate \( \alpha^2 \beta^2 \gamma^2 \) This can be computed as: \[ \alpha^2 \beta^2 \gamma^2 = (\alpha \beta \gamma)^2 = (-r)^2 = r^2 \] ### Step 6: Substitute back into the expanded expression Now, we can substitute back into our expanded expression: \[ (1 + \alpha^2)(1 + \beta^2)(1 + \gamma^2) = 1 + (p^2 - 2q) + (q^2 - 2pr) + r^2 \] Combining these terms gives: \[ = 1 + p^2 - 2q + q^2 - 2pr + r^2 \] ### Final Result Thus, the final value of \( (1 + \alpha^2)(1 + \beta^2)(1 + \gamma^2) \) is: \[ 1 + p^2 - 2q + q^2 - 2pr + r^2 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum alpha^2

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum alpha^3

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum (1)/( alpha )

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum alpha^2 beta^2

If alpha , beta , gamma are the roots of x^3 -px^2 +qx -r=0 and r ne 0 then find (1)/( alpha^2) +(1)/( beta^2) +(1)/( gamma ^2) in terms of p,q ,r

If alpha , beta , gamma are the roots of x^3 + px^2+qx -r=0 then alpha^2 + beta^2 + gamma^2 =

If alpha, beta, gamma are the roots of the equation x^(3) + x + 1 = 0 , then the value of alpha^(3) + beta^(3) + gamma^(3) , is

If alpha, beta, gamma are the roots of the equation x^3 + px^2 + qx + r = n then the value of (alpha - 1/(beta gamma)) (beta -1/(gamma alpha)) (gamma-1/(alpha beta)) is:

If alpha, beta ,gamma are roots of x^(3) + px^(2) + qx + r = 0 then sum (1)/(alpha^(2)) =

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum alpha^2 beta + sum alpha beta ^2