Home
Class 12
MATHS
If alpha, beta, gamma are the roiots of ...

If `alpha, beta, gamma` are the roiots of `x^(3) - 10x^(2) +6x - 8 = 0 ` then `alpha^(2) + beta^(2) + gamma^(2)` =

A

`-88`

B

`88`

C

`-7`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \alpha^2 + \beta^2 + \gamma^2 \) where \( \alpha, \beta, \gamma \) are the roots of the polynomial equation \( x^3 - 10x^2 + 6x - 8 = 0 \), we can use the relationships provided by Vieta's formulas. ### Step-by-step Solution: 1. **Identify the coefficients**: The given polynomial is \( x^3 - 10x^2 + 6x - 8 = 0 \). - Here, \( A = 1 \), \( B = -10 \), \( C = 6 \), and \( D = -8 \). 2. **Use Vieta's formulas**: According to Vieta's formulas: - The sum of the roots \( \alpha + \beta + \gamma = -\frac{B}{A} = -\frac{-10}{1} = 10 \). - The sum of the products of the roots taken two at a time \( \alpha\beta + \beta\gamma + \gamma\alpha = \frac{C}{A} = \frac{6}{1} = 6 \). 3. **Use the formula for the sum of squares**: We know the formula for the sum of squares of the roots: \[ \alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \gamma\alpha) \] 4. **Substitute the values**: - Substitute \( \alpha + \beta + \gamma = 10 \) and \( \alpha\beta + \beta\gamma + \gamma\alpha = 6 \): \[ \alpha^2 + \beta^2 + \gamma^2 = (10)^2 - 2(6) \] 5. **Calculate**: - Calculate \( (10)^2 = 100 \). - Calculate \( 2(6) = 12 \). - Now, substitute these values: \[ \alpha^2 + \beta^2 + \gamma^2 = 100 - 12 = 88 \] ### Final Answer: \[ \alpha^2 + \beta^2 + \gamma^2 = 88 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta, gamma are roots of x^(3) - 2x^(2) + 3x - 4 = 0 , then sum a^(2) beta^(2) =

If alpha, beta, gamma are the roots of the equation x^(3) + ax^(2) + bx + c = 0, "then" alpha^(-1) + beta^(-1) + gamma^(-1)=

If alpha , beta , gamma are the roots of x^3 + px^2+qx -r=0 then alpha^2 + beta^2 + gamma^2 =

If alpha , beta , gamma are the roots of x^3 +2x^2 +3x +8=0 then (3-alpha )(3 - beta) (3-gamma) =

If alpha, beta, gamma are roots of the equation x^(3) + px^(2) + qx + r = 0 , then (alpha + beta) (beta + gamma)(gamma + alpha) =

If alpha , beta , gamma are roots of the equation x^3 + ax^2 + bx +c=0 then alpha^(-1) + beta^(-1) + gamma^(-1) =

If alpha , beta , gamma are the roots of x^3 + 2x^2 + 3x +8=0 then ( alpha + beta ) ( beta + gamma) ( gamma + alpha ) =

If alpha , beta , gamma are the roots of the equation x^3 -6x^2 +11 x +6=0 then sum alpha^2 beta =

If alpha , beta , gamma are the roots of the equation x^3 +px^2 +qx +r=0 then sum alpha^2 ( beta + gamma)=

If alpha ,beta and gamma are the roots of x^3-2x^2+3x-4 =0 , then find sumalpha^2beta^2