Home
Class 12
MATHS
If alpha, beta ,gamma are roots of x^(3)...

If `alpha, beta ,gamma` are roots of `x^(3) + px^(2) + qx + r = 0 ` then `sum (1)/(alpha^(2))` =

A

`(q^2-2pr)/(r^2)`

B

`q^3-3pqr +3r^2`

C

`(p^2 -2q)/(r^2)`

D

`(pq)/(r ) -3`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the summation \( \sum \frac{1}{\alpha^2} \) where \( \alpha, \beta, \gamma \) are the roots of the polynomial equation \( x^3 + px^2 + qx + r = 0 \), we can follow these steps: ### Step 1: Identify the relationships between roots and coefficients From Vieta's formulas, we know: - The sum of the roots: \[ \alpha + \beta + \gamma = -p \] - The sum of the product of the roots taken two at a time: \[ \alpha\beta + \beta\gamma + \gamma\alpha = q \] - The product of the roots: \[ \alpha\beta\gamma = -r \] ### Step 2: Express the desired sum We want to find: \[ \sum \frac{1}{\alpha^2} = \frac{1}{\alpha^2} + \frac{1}{\beta^2} + \frac{1}{\gamma^2} \] This can be rewritten using a common denominator: \[ \sum \frac{1}{\alpha^2} = \frac{\beta^2\gamma^2 + \gamma^2\alpha^2 + \alpha^2\beta^2}{\alpha^2\beta^2\gamma^2} \] ### Step 3: Find the numerator To find \( \beta^2\gamma^2 + \gamma^2\alpha^2 + \alpha^2\beta^2 \), we can use the identity: \[ (\alpha\beta + \beta\gamma + \gamma\alpha)^2 = \beta^2\gamma^2 + \gamma^2\alpha^2 + \alpha^2\beta^2 + 2\alpha\beta\gamma(\alpha + \beta + \gamma) \] Substituting the values from Vieta's formulas: \[ q^2 = \beta^2\gamma^2 + \gamma^2\alpha^2 + \alpha^2\beta^2 + 2(-r)(-p) \] This simplifies to: \[ \beta^2\gamma^2 + \gamma^2\alpha^2 + \alpha^2\beta^2 = q^2 - 2rp \] ### Step 4: Find the denominator The denominator \( \alpha^2\beta^2\gamma^2 \) can be expressed as: \[ (\alpha\beta\gamma)^2 = (-r)^2 = r^2 \] ### Step 5: Combine results Now substituting back into our expression for \( \sum \frac{1}{\alpha^2} \): \[ \sum \frac{1}{\alpha^2} = \frac{q^2 - 2rp}{r^2} \] ### Final Answer Thus, the required value is: \[ \sum \frac{1}{\alpha^2} = \frac{q^2 - 2rp}{r^2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum (1)/( alpha )

If alpha , beta , gamma are the roots of x^3 -px^2 +qx -r=0 and r ne 0 then find (1)/( alpha^2) +(1)/( beta^2) +(1)/( gamma ^2) in terms of p,q ,r

If alpha, beta, gamma are roots of the equation x^(3) + px^(2) + qx + r = 0 , then (alpha + beta) (beta + gamma)(gamma + alpha) =

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum alpha^2

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum alpha^3

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum alpha^2 beta^2

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then the value of (1 + alpha^2) (1+ beta^2) (1+ gamma^2) is

If alpha , beta , gamma are the roots of the equation x^3 +4x^2 -5x +3=0 then sum (1)/( alpha^2 beta^2)=

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum alpha^2 beta + sum alpha beta ^2

If alpha , beta , gamma are the roots of the equation x^3 +px^2 +qx +r=0 then sum alpha^2 ( beta + gamma)=