Home
Class 12
MATHS
If alpha ,beta and gamma are the roots o...

If `alpha ,beta and gamma` are the roots of
`x^3-2x^2+3x-4 =0 `, then find
(i) `sumalpha^2beta^2 (ii)sumalpha beta(alpha+beta)`

A

6

B

`-6`

C

`7`

D

`-7`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find two expressions based on the roots of the polynomial \( x^3 - 2x^2 + 3x - 4 = 0 \). The roots are denoted as \( \alpha, \beta, \) and \( \gamma \). ### Step 1: Identify the coefficients The given polynomial can be compared to the general form \( ax^3 + bx^2 + cx + d = 0 \). From this, we can identify: - \( a = 1 \) - \( b = -2 \) - \( c = 3 \) - \( d = -4 \) ### Step 2: Use Vieta's formulas From Vieta's formulas, we can derive the following relationships among the roots: 1. The sum of the roots: \[ \alpha + \beta + \gamma = -\frac{b}{a} = -\frac{-2}{1} = 2 \] 2. The sum of the products of the roots taken two at a time: \[ \alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a} = \frac{3}{1} = 3 \] 3. The product of the roots: \[ \alpha\beta\gamma = -\frac{d}{a} = -\frac{-4}{1} = 4 \] ### Step 3: Find \( \sum \alpha^2 \beta^2 \) We need to find \( \sum \alpha^2 \beta^2 \), which can be expressed as: \[ \sum \alpha^2 \beta^2 = \alpha^2 \beta^2 + \beta^2 \gamma^2 + \gamma^2 \alpha^2 \] This can be rewritten using the identity: \[ \sum \alpha^2 \beta^2 = (\alpha\beta + \beta\gamma + \gamma\alpha)^2 - 2\alpha\beta\gamma(\alpha + \beta + \gamma) \] Substituting the values we found: \[ \sum \alpha^2 \beta^2 = (3)^2 - 2(4)(2) \] Calculating this gives: \[ = 9 - 16 = -7 \] ### Step 4: Find \( \sum \alpha \beta (\alpha + \beta) \) Next, we need to find \( \sum \alpha \beta (\alpha + \beta) \): \[ \sum \alpha \beta (\alpha + \beta) = \alpha\beta(\alpha + \beta) + \beta\gamma(\beta + \gamma) + \gamma\alpha(\gamma + \alpha) \] This can be rewritten as: \[ = \alpha\beta(2 - \gamma) + \beta\gamma(2 - \alpha) + \gamma\alpha(2 - \beta) \] Expanding this gives: \[ = 2(\alpha\beta + \beta\gamma + \gamma\alpha) - (\alpha\beta\gamma + \beta\gamma\alpha + \gamma\alpha\beta) \] Substituting the known values: \[ = 2(3) - 3(4) \] Calculating this gives: \[ = 6 - 12 = -6 \] ### Final Answers Thus, the final results are: 1. \( \sum \alpha^2 \beta^2 = -7 \) 2. \( \sum \alpha \beta (\alpha + \beta) = -6 \)
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha ,beta and gamma are the roots of x^3-2x^2+3x-4 =0 , then find sumalpha^2beta^2

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum alpha^2 beta^2

If alpha, beta and 1 are the roots of x^3-2x^2-5x+6=0 , then find alpha and beta

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum alpha^2 beta + sum alpha beta ^2

If alpha , beta , gamma are the roots of the equation x^3 -6x^2 +11 x +6=0 then sum alpha^2 beta =

If alpha , beta , gamma are the roots of the equation x^3 +4x^2 -5x +3=0 then sum (1)/( alpha^2 beta^2)=

Let alpha,beta,gamma be the roots of x^3+ax^2+bx+c=0 then find sum alpha^2beta+sumalphabeta^2 .

If alpha , beta , gamma are the roots of x^3 +2x^2 +3x +8=0 then (3-alpha )(3 - beta) (3-gamma) =

If alpha, beta, gamma are roots of x^(3) - 2x^(2) + 3x - 4 = 0 , then sum a^(2) beta^(2) =

If alpha , beta , gamma are the roots of x^3 + px^2+qx -r=0 then alpha^2 + beta^2 + gamma^2 =