Home
Class 12
MATHS
If alpha , beta , gamma are the ro...

If ` alpha , beta , gamma ` are the roots of `x^3 +qx +r=0` then ` sum ( beta + gamma )^(-1)`=

A

`(q)/(r )`

B

`(r )/(q)`

C

`-(q)/( r)`

D

`-r/q`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the summation of the inverses of the sums of the roots of the polynomial equation \(x^3 + qx + r = 0\), where the roots are \(\alpha\), \(\beta\), and \(\gamma\). ### Step-by-step Solution: 1. **Identify the Roots**: The roots of the polynomial \(x^3 + qx + r = 0\) are given as \(\alpha\), \(\beta\), and \(\gamma\). 2. **Use Vieta's Formulas**: From Vieta's formulas for a cubic equation \(ax^3 + bx^2 + cx + d = 0\): - The sum of the roots \(\alpha + \beta + \gamma = -\frac{b}{a}\). - The sum of the products of the roots taken two at a time \(\alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a}\). - The product of the roots \(\alpha\beta\gamma = -\frac{d}{a}\). For our equation: - \(a = 1\), \(b = 0\), \(c = q\), \(d = r\). - Therefore, \(\alpha + \beta + \gamma = 0\), - \(\alpha\beta + \beta\gamma + \gamma\alpha = q\), - \(\alpha\beta\gamma = -r\). 3. **Express \(\beta + \gamma\)**: Since \(\alpha + \beta + \gamma = 0\), we can express \(\beta + \gamma\) as: \[ \beta + \gamma = -\alpha \] Similarly, we can express the other pairs: \[ \gamma + \alpha = -\beta \] \[ \alpha + \beta = -\gamma \] 4. **Calculate the Summation**: We need to find: \[ \sum \frac{1}{\beta + \gamma} = \frac{1}{\beta + \gamma} + \frac{1}{\gamma + \alpha} + \frac{1}{\alpha + \beta} \] Substituting the expressions for \(\beta + \gamma\), \(\gamma + \alpha\), and \(\alpha + \beta\): \[ = \frac{1}{-\alpha} + \frac{1}{-\beta} + \frac{1}{-\gamma} \] \[ = -\left(\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}\right) \] 5. **Combine the Terms**: The expression \(\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}\) can be rewritten using the product of the roots: \[ \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{\beta\gamma + \gamma\alpha + \alpha\beta}{\alpha\beta\gamma} \] Substituting the values from Vieta's formulas: \[ = \frac{q}{-r} = -\frac{q}{r} \] 6. **Final Result**: Therefore, we have: \[ \sum \frac{1}{\beta + \gamma} = -\left(-\frac{q}{r}\right) = \frac{q}{r} \] ### Conclusion: The value of \(\sum (\beta + \gamma)^{-1}\) is \(\frac{q}{r}\).
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum alpha^3

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum alpha^2

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum (1)/( alpha )

If alpha , beta , gamma are the roots of x^3 + px^2+qx -r=0 then alpha^2 + beta^2 + gamma^2 =

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum alpha^2 beta^2

If alpha , beta , gamma are the roots of x^3 + qx +r=0 then (1)/( alpha + beta - gamma) +(1)/( beta + gamma - alpha) +(1)/(gamma + alpha - beta) =

If alpha , beta , gamma are the roots of x^3 + qx +r=0 then (1)/( alpha + beta - gamma) +(1)/( beta + gamma - alpha) +(1)/(gamma + alpha - beta) =

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find ( beta + gamma - 3 alpha ) ( gamma + alpha - 3 beta) (alpha + beta - 3 gamma)

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum alpha^2 beta + sum alpha beta ^2

If alpha , beta , gamma are the roots of x^3 + 2x^2 + 3x +8=0 then ( alpha + beta ) ( beta + gamma) ( gamma + alpha ) =