Home
Class 12
MATHS
If alpha , beta , gamma are the roo...

If ` alpha , beta , gamma ` are the roots of the equation `x^3 +4x^2 -5x +3=0` then ` sum (1)/( alpha^2 beta^2)=`

A

`-9/2`

B

`-(38 )/( 49 )`

C

`(26 )/(9)`

D

`98`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \sum \frac{1}{\alpha^2 \beta^2} \) where \( \alpha, \beta, \gamma \) are the roots of the polynomial \( x^3 + 4x^2 - 5x + 3 = 0 \), we can follow these steps: ### Step 1: Identify the coefficients The given polynomial is \( x^3 + 4x^2 - 5x + 3 = 0 \). We can identify the coefficients: - \( a = 1 \) - \( b = 4 \) - \( c = -5 \) - \( d = 3 \) ### Step 2: Use Vieta's formulas According to Vieta's formulas, we have: - The sum of the roots \( \alpha + \beta + \gamma = -\frac{b}{a} = -\frac{4}{1} = -4 \) - The sum of the products of the roots taken two at a time \( \alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a} = -5 \) - The product of the roots \( \alpha\beta\gamma = -\frac{d}{a} = -\frac{3}{1} = -3 \) ### Step 3: Find \( \sum \frac{1}{\alpha^2 \beta^2} \) We can express \( \sum \frac{1}{\alpha^2 \beta^2} \) as follows: \[ \sum \frac{1}{\alpha^2 \beta^2} = \frac{1}{\alpha^2 \beta^2} + \frac{1}{\beta^2 \gamma^2} + \frac{1}{\gamma^2 \alpha^2} \] This can be rewritten using the product of the roots: \[ = \frac{\gamma^2 + \alpha^2 + \beta^2}{(\alpha\beta\gamma)^2} \] Substituting \( \alpha\beta\gamma = -3 \): \[ = \frac{\gamma^2 + \alpha^2 + \beta^2}{(-3)^2} = \frac{\gamma^2 + \alpha^2 + \beta^2}{9} \] ### Step 4: Calculate \( \alpha^2 + \beta^2 + \gamma^2 \) Using the identity: \[ \alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \gamma\alpha) \] Substituting the values we found: \[ = (-4)^2 - 2(-5) = 16 + 10 = 26 \] ### Step 5: Substitute back into the equation Now we can substitute \( \alpha^2 + \beta^2 + \gamma^2 \) back into our expression for \( \sum \frac{1}{\alpha^2 \beta^2} \): \[ \sum \frac{1}{\alpha^2 \beta^2} = \frac{26}{9} \] ### Final Answer Thus, the value of \( \sum \frac{1}{\alpha^2 \beta^2} \) is \( \frac{26}{9} \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha , beta , gamma are the roots of the equation x^3 -6x^2 +11 x +6=0 then sum alpha^2 beta =

If alpha , beta , gamma are the roots of the equation x^3 +px^2 +qx +r=0 then sum alpha^2 ( beta + gamma)=

If alpha, beta ,gamma are the roots of the equation x ^(3) + 2x ^(2) - x+1 =0, then vlaue of ((2- alpha )(2-beta) (2-gamma))/((2+ alpha ) (2+ beta ) (2 + gamma)) is :

If alpha, beta, gamma are the roots of the equation x^3 + px^2 + qx + r = n then the value of (alpha - 1/(beta gamma)) (beta -1/(gamma alpha)) (gamma-1/(alpha beta)) is:

If alpha, beta, gamma are the roots of the equation x^(3) + x + 1 = 0 , then the value of alpha^(3) + beta^(3) + gamma^(3) , is

If alpha , beta , gamma are roots of the equation x^3 + ax^2 + bx +c=0 then alpha^(-1) + beta^(-1) + gamma^(-1) =

If alpha, beta, gamma are the roots of the equation x^(3) + ax^(2) + bx + c = 0, "then" alpha^(-1) + beta^(-1) + gamma^(-1)=

If alpha, beta , gamma, delta are the roots of the equation x^4+x^2+1=0 then the equation whose roots are alpha^2, beta^2, gamma^2, delta^2 is

if alpha, beta, gamma are the roots of the equation x^(3) + 3x + 2=0 " then " (alpha^(3) +beta^(3)+gamma^(3))/(alpha^(2) +beta^(2)+gamma^(2))

If alpha and beta are the roots of the equation 2x^(2) - 3x + 4 = 0 , then alpha^(2) + beta^(2) = ____