Home
Class 12
MATHS
Resolve (2x^(3)+3x^(2)+5x+7)/((x+1)^(5))...

Resolve `(2x^(3)+3x^(2)+5x+7)/((x+1)^(5))` into partial fractions.

Text Solution

AI Generated Solution

The correct Answer is:
To resolve the expression \(\frac{2x^3 + 3x^2 + 5x + 7}{(x + 1)^5}\) into partial fractions, we will follow these steps: ### Step 1: Identify the form of the partial fractions Since the denominator is \((x + 1)^5\), the partial fraction decomposition will take the form: \[ \frac{A}{(x + 1)} + \frac{B}{(x + 1)^2} + \frac{C}{(x + 1)^3} + \frac{D}{(x + 1)^4} + \frac{E}{(x + 1)^5} \] where \(A\), \(B\), \(C\), \(D\), and \(E\) are constants that we need to determine. ### Step 2: Set up the equation We can write: \[ \frac{2x^3 + 3x^2 + 5x + 7}{(x + 1)^5} = \frac{A}{(x + 1)} + \frac{B}{(x + 1)^2} + \frac{C}{(x + 1)^3} + \frac{D}{(x + 1)^4} + \frac{E}{(x + 1)^5} \] Multiplying both sides by \((x + 1)^5\) to eliminate the denominator gives: \[ 2x^3 + 3x^2 + 5x + 7 = A(x + 1)^4 + B(x + 1)^3 + C(x + 1)^2 + D(x + 1) + E \] ### Step 3: Expand the right-hand side Now we will expand the right-hand side: 1. \(A(x + 1)^4 = A(x^4 + 4x^3 + 6x^2 + 4x + 1)\) 2. \(B(x + 1)^3 = B(x^3 + 3x^2 + 3x + 1)\) 3. \(C(x + 1)^2 = C(x^2 + 2x + 1)\) 4. \(D(x + 1) = D(x + 1)\) 5. \(E\) Combining these, we get: \[ Ax^4 + (4A + B)x^3 + (6A + 3B + C)x^2 + (4A + 3B + 2C + D)x + (A + B + C + D + E) \] ### Step 4: Equate coefficients Now we equate the coefficients from both sides: - For \(x^4\): \(A = 0\) - For \(x^3\): \(4A + B = 2\) - For \(x^2\): \(6A + 3B + C = 3\) - For \(x^1\): \(4A + 3B + 2C + D = 5\) - For the constant term: \(A + B + C + D + E = 7\) ### Step 5: Solve the system of equations From \(A = 0\), we substitute into the other equations: 1. \(B = 2\) 2. \(3B + C = 3 \Rightarrow 3(2) + C = 3 \Rightarrow C = -3\) 3. \(3B + 2C + D = 5 \Rightarrow 3(2) + 2(-3) + D = 5 \Rightarrow D = 1\) 4. \(B + C + D + E = 7 \Rightarrow 2 - 3 + 1 + E = 7 \Rightarrow E = 7\) ### Step 6: Write the final partial fraction decomposition Substituting back the values of \(A\), \(B\), \(C\), \(D\), and \(E\): \[ \frac{2}{(x + 1)^2} - \frac{3}{(x + 1)^3} + \frac{1}{(x + 1)^4} + \frac{7}{(x + 1)^5} \] Thus, the partial fraction decomposition is: \[ \frac{2}{(x + 1)^2} - \frac{3}{(x + 1)^3} + \frac{1}{(x + 1)^4} + \frac{7}{(x + 1)^5} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Resolve (3x^(3)+2x^(2)+x+1)/((x+1)(x+2)) into partial fraction

Resolve (3x^(3)-8x^(2)+10)/((x-1)^(4)) into partial fractions.

(2x+1)/((x+1)(x-2)) into partial fractions

Resolve (2x^(4)+2x^(2)+x+1)/(x(x^(2)+1)^(2)) into partial fractions.

Resolve (x^(3)-6x^(2)+10x-2)/(x^(2)-5x+6) into partial fractions:

Resolve (2x+3)/((x-1)^(3)) into partial fractions.

Resolve (3x^(3)-2x^(2)-1)/(x^(4)+x^(2)+1) into partial fractions.

Resolve (x^(3)+x^(2)+1)/((x^(2)+2)(x^(2)+3)) into partial fractions.

3.Resolve (x^(4)-x^(2)+1)/(x^(2)(x^(2)-1)^(2)) into partial fractions.

Resolve x/((x-1)(x-3)) into partial fractions