Home
Class 12
MATHS
Resolve (3x^(2)+x-2)/((x-2)^(2)(1-2x)) i...

Resolve `(3x^(2)+x-2)/((x-2)^(2)(1-2x))` into partial fractions.

Text Solution

AI Generated Solution

The correct Answer is:
To resolve the expression \(\frac{3x^2 + x - 2}{(x-2)^2(1-2x)}\) into partial fractions, we follow these steps: ### Step 1: Set Up the Partial Fraction Decomposition We start by expressing the given fraction in terms of its partial fractions. The denominator consists of \((x-2)^2\) and \((1-2x)\), so we can write: \[ \frac{3x^2 + x - 2}{(x-2)^2(1-2x)} = \frac{A}{x-2} + \frac{B}{(x-2)^2} + \frac{C}{1-2x} \] ### Step 2: Clear the Denominator Next, we multiply both sides by the denominator \((x-2)^2(1-2x)\) to eliminate the fraction: \[ 3x^2 + x - 2 = A(x-2)(1-2x) + B(1-2x) + C(x-2)^2 \] ### Step 3: Expand the Right Side Now, we expand the right-hand side: 1. **Expand \(A(x-2)(1-2x)\)**: \[ A(x-2)(1-2x) = A[(x-2) - 2x(x-2)] = A[x - 2 - 2x^2 + 4x] = A[-2x^2 + 5x - 2] \] 2. **Expand \(B(1-2x)\)**: \[ B(1-2x) = B - 2Bx \] 3. **Expand \(C(x-2)^2\)**: \[ C(x-2)^2 = C(x^2 - 4x + 4) = Cx^2 - 4Cx + 4C \] Combining these expansions gives: \[ 3x^2 + x - 2 = (-2A + C)x^2 + (5A - 2B - 4C)x + (-2A + B + 4C) \] ### Step 4: Compare Coefficients Now, we compare coefficients from both sides: 1. For \(x^2\): \[ -2A + C = 3 \quad \text{(1)} \] 2. For \(x\): \[ 5A - 2B - 4C = 1 \quad \text{(2)} \] 3. For the constant term: \[ -2A + B + 4C = -2 \quad \text{(3)} \] ### Step 5: Solve the System of Equations We now have a system of three equations: 1. From (1): \(C = 3 + 2A\) 2. Substitute \(C\) into (2): \[ 5A - 2B - 4(3 + 2A) = 1 \implies 5A - 2B - 12 - 8A = 1 \implies -3A - 2B = 13 \quad \text{(4)} \] 3. Substitute \(C\) into (3): \[ -2A + B + 4(3 + 2A) = -2 \implies -2A + B + 12 + 8A = -2 \implies 6A + B = -14 \quad \text{(5)} \] Now we solve equations (4) and (5): From (5): \[ B = -14 - 6A \] Substituting into (4): \[ -3A - 2(-14 - 6A) = 13 \implies -3A + 28 + 12A = 13 \implies 9A = -15 \implies A = -\frac{5}{3} \] Now substituting \(A\) back to find \(B\): \[ B = -14 - 6\left(-\frac{5}{3}\right) = -14 + 10 = -4 \] Now substituting \(A\) back to find \(C\): \[ C = 3 + 2\left(-\frac{5}{3}\right) = 3 - \frac{10}{3} = -\frac{1}{3} \] ### Step 6: Write the Final Partial Fraction Decomposition Now we have: - \(A = -\frac{5}{3}\) - \(B = -4\) - \(C = -\frac{1}{3}\) Thus, the partial fraction decomposition is: \[ \frac{3x^2 + x - 2}{(x-2)^2(1-2x)} = \frac{-\frac{5}{3}}{x-2} + \frac{-4}{(x-2)^2} + \frac{-\frac{1}{3}}{1-2x} \] ### Final Answer: \[ \frac{3x^2 + x - 2}{(x-2)^2(1-2x)} = -\frac{5}{3(x-2)} - \frac{4}{(x-2)^2} - \frac{1/3}{1-2x} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Resolve (3x^(2)+1)/((x^(2)-3x+2)(2x+1)) into partial fractions.

Resolve (x^(3)-6x^(2)+10x-2)/(x^(2)-5x+6) into partial fractions:

Resolve (x^(2)+4x+7)/((x^(2)+x+1)^(2)) into partial fractions.

Resolve (x^(3)+x-1)/((x^(2)+1)(x^(2)+2x+3)) into partial fractions.

Resolve (3x-2)/((x^(2)+4)^(2)(x-1)) into partial fractions.

Resolve (3x^(3)-8x^(2)+10)/((x-1)^(4)) into partial fractions.

(2x+1)/((x+1)(x-2)) into partial fractions

Resolve (3x^(3)-2x^(2)-1)/(x^(4)+x^(2)+1) into partial fractions.

Resolve (3x-2)/((x-1)^2(x+1)(x+2)) into partial fractions.

Resolve (2x^(2)+2x+1)/((x^(3)+x^(2)) into partial fractions.