Home
Class 12
MATHS
If (1)/((ax+b)(cx+d))=(A)/(ax+b) + (B)/...

If `(1)/((ax+b)(cx+d))=(A)/(ax+b) + (B)/(cx+d)` then show that `(1)/((ax+b)^(2)(cx+d))=(A)/((ax+b)^(2))+(AB)/(ax+b)+(B^(2))/(cx+d)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given equation and manipulate it to reach the desired form. ### Step 1: Start with the given equation We have the equation: \[ \frac{1}{(ax + b)(cx + d)} = \frac{A}{ax + b} + \frac{B}{cx + d} \] ### Step 2: Combine the right-hand side To combine the right-hand side, we need a common denominator: \[ \frac{A}{ax + b} + \frac{B}{cx + d} = \frac{A(cx + d) + B(ax + b)}{(ax + b)(cx + d)} \] ### Step 3: Set the numerators equal Since the denominators are equal, we can set the numerators equal to each other: \[ 1 = A(cx + d) + B(ax + b) \] ### Step 4: Expand the right-hand side Expanding the right-hand side gives: \[ 1 = Acx + Ad + Bax + Bb \] Rearranging this, we have: \[ 1 = (Ac + Ba)x + (Ad + Bb) \] ### Step 5: Equate coefficients For the equation to hold for all \(x\), the coefficients of \(x\) must be equal and the constant terms must be equal. Thus, we get: 1. \(Ac + Ba = 0\) (coefficient of \(x\)) 2. \(Ad + Bb = 1\) (constant term) ### Step 6: Now, we need to show the second part We need to show that: \[ \frac{1}{(ax + b)^2(cx + d)} = \frac{A}{(ax + b)^2} + \frac{AB}{ax + b} + \frac{B^2}{cx + d} \] ### Step 7: Start with the left-hand side of the new equation We start with: \[ \frac{1}{(ax + b)^2(cx + d)} \] ### Step 8: Use the original equation We can substitute the original equation into this expression: \[ \frac{1}{(ax + b)^2(cx + d)} = \frac{1}{(ax + b)^2} \cdot \frac{1}{cx + d} \] Using the original equation, we replace \(\frac{1}{cx + d}\): \[ \frac{1}{(ax + b)^2(cx + d)} = \frac{1}{(ax + b)^2} \left( \frac{A}{ax + b} + \frac{B}{cx + d} \right) \] ### Step 9: Distribute the term Distributing gives: \[ \frac{1}{(ax + b)^2(cx + d)} = \frac{A}{(ax + b)^3} + \frac{B}{(ax + b)^2(cx + d)} \] ### Step 10: Combine and simplify Now, we can combine the terms: \[ \frac{A}{(ax + b)^2} + \frac{AB}{ax + b} + \frac{B^2}{cx + d} \] ### Conclusion Thus, we have shown that: \[ \frac{1}{(ax + b)^2(cx + d)} = \frac{A}{(ax + b)^2} + \frac{AB}{ax + b} + \frac{B^2}{cx + d} \] Hence proved.
Promotional Banner

Similar Questions

Explore conceptually related problems

If y =(ax +b)/( cx + d) , then prove that 2y_1y_3=3(y_2)^2

If f(x) = y = (ax - b)/(cx - a) , then prove that f(y) = x.

y = f(x) = (ax-b)/(cx-a) then f(y) = ?

d/(dx) (Ax + B)^(n)

If a,b,c and d are in G.P , then show that ax^(2)+c divides ax^(3)+bx^(2)+cx+d

int(ax+b)sqrt (cx+d)dx

If 1/(x^(4)+x^(2)+1)=(Ax+B)/(x^(2)+x+1)+(Cx+D)/(x^(2)-x+1) " then "C+D=

int(ax^3+bx^2+cx+d)dx

If y^(2) = ax^(2) + b , " then " (d^(2)y)/( dx^(2))

Differentiate : sin(ax+b)/cos(cx+d)