Home
Class 12
MATHS
If (x^(2)+3)/((x^(2)+2)(x^(2)+5))=(Ax+B)...

If `(x^(2)+3)/((x^(2)+2)(x^(2)+5))=(Ax+B)/(x^(2)+2)+(Cx+D)/(x^(2)+5)`, then find the value of `A+C`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{x^2 + 3}{(x^2 + 2)(x^2 + 5)} = \frac{Ax + B}{x^2 + 2} + \frac{Cx + D}{x^2 + 5} \] we will follow these steps: ### Step 1: Clear the denominators Multiply both sides by \((x^2 + 2)(x^2 + 5)\): \[ x^2 + 3 = (Ax + B)(x^2 + 5) + (Cx + D)(x^2 + 2) \] ### Step 2: Expand the right-hand side Expanding both terms on the right-hand side: \[ (Ax + B)(x^2 + 5) = Ax^3 + 5Ax + Bx^2 + 5B \] \[ (Cx + D)(x^2 + 2) = Cx^3 + 2Cx + Dx^2 + 2D \] Combining these, we get: \[ x^2 + 3 = (A + C)x^3 + (B + D)x^2 + (5A + 2C)x + (5B + 2D) \] ### Step 3: Set up equations based on coefficients Now, we can equate the coefficients from both sides of the equation: 1. Coefficient of \(x^3\): \(A + C = 0\) 2. Coefficient of \(x^2\): \(B + D = 1\) 3. Coefficient of \(x\): \(5A + 2C = 0\) 4. Constant term: \(5B + 2D = 3\) ### Step 4: Solve for \(A + C\) From the first equation, we already have: \[ A + C = 0 \] Thus, the value of \(A + C\) is \(0\). ### Final Answer The value of \(A + C\) is \(0\). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If (x^(3)+x^(2)+1)/((x^(2)+2)(x^(2)+3))=(Ax+B)/(x^(2)+2)+(Cx+D)/(x^(2)+3) , then A+B+C+D=

If (x^(2)+x+2)/(x^(2)+2x+1)=A+(B)/(x+1)+(C)/((x+1)^(2)) , then find the value of A+B+C .

If (2x^(3)+1)/((x-1)(x+1)(x+2))=A+(B)/(x-1)+(C)/(x+1)+(D)/(x+2) , then find the value of A+B+C+D .

If 1/(x^(4)+x^(2)+1)=(Ax+B)/(x^(2)+x+1)+(Cx+D)/(x^(2)-x+1) " then "C+D=

Resolve into Partial Fractions If (1)/(x^(3)(x+3))=(1)/(Ax) - (1)/(Bx^(2))+(1)/(Cx^(3))-(1)/(D(x+3)) then find the values of A, B, C and D.

5 2/ 3 -x 5/6 = 2 . Find the value of x .

If x=2 and y=5 find the values of : 2x+3y

If x+2a is factor of x^(5)-4a^(2)x^(3)+2x+2a +3 , then find the value of a .

If x=2 and y=5 find the values of : (3x)/(2y)

If x satisfies the cubic equation ax^(3)+bx^(2)+cx+d=0 such that cos^(-1)(x)+cos^(-1)(2x)+cos^(-1)(3x)=pi , then find the value of (b+c)-(a+d) .