Home
Class 12
MATHS
If (x^(2)+x+2)/(x^(2)+2x+1)=A+(B)/(x+1)+...

If `(x^(2)+x+2)/(x^(2)+2x+1)=A+(B)/(x+1)+(C)/((x+1)^(2))`, then find the value of `A+B+C`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{x^2 + x + 2}{x^2 + 2x + 1} = A + \frac{B}{x + 1} + \frac{C}{(x + 1)^2}, \] we start by simplifying the left-hand side. ### Step 1: Simplify the Denominator The denominator \(x^2 + 2x + 1\) can be factored as: \[ x^2 + 2x + 1 = (x + 1)^2. \] Thus, we can rewrite the left-hand side: \[ \frac{x^2 + x + 2}{(x + 1)^2}. \] ### Step 2: Multiply Both Sides by \((x + 1)^2\) To eliminate the denominator, we multiply both sides by \((x + 1)^2\): \[ x^2 + x + 2 = A(x + 1)^2 + B(x + 1) + C. \] ### Step 3: Expand the Right-Hand Side Now, we expand the right-hand side: \[ A(x + 1)^2 = A(x^2 + 2x + 1) = Ax^2 + 2Ax + A, \] \[ B(x + 1) = Bx + B, \] \[ C = C. \] Combining these, we get: \[ Ax^2 + (2A + B)x + (A + B + C). \] ### Step 4: Set Up the Equation Now we equate the coefficients from both sides: \[ x^2 + x + 2 = Ax^2 + (2A + B)x + (A + B + C). \] ### Step 5: Compare Coefficients From the left-hand side, we have: - Coefficient of \(x^2\): \(1\) - Coefficient of \(x\): \(1\) - Constant term: \(2\) From the right-hand side, we have: - Coefficient of \(x^2\): \(A\) - Coefficient of \(x\): \(2A + B\) - Constant term: \(A + B + C\) Setting these equal gives us the following equations: 1. \(A = 1\) 2. \(2A + B = 1\) 3. \(A + B + C = 2\) ### Step 6: Solve the Equations From the first equation, we have: \[ A = 1. \] Substituting \(A = 1\) into the second equation: \[ 2(1) + B = 1 \implies 2 + B = 1 \implies B = 1 - 2 = -1. \] Now substituting \(A = 1\) and \(B = -1\) into the third equation: \[ 1 - 1 + C = 2 \implies C = 2. \] ### Step 7: Find \(A + B + C\) Now we can find \(A + B + C\): \[ A + B + C = 1 - 1 + 2 = 2. \] Thus, the final answer is: \[ \boxed{2}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If (x^(2)+x+1)/(x^(2)+2x+1)=A+B/(x+1)+C/(x+1)^(2) then A - B =

If (2x^(3)+1)/((x-1)(x+1)(x+2))=A+(B)/(x-1)+(C)/(x+1)+(D)/(x+2) , then find the value of A+B+C+D .

If (x+1)/(x^(3)+x)=A/x +(Bx+C)/(x^(2)+1) , then find the principal value of sin^(-1)(A/B) .

If (2x^(2)+5)/((x+1)^(2)(x-3))=(A)/(x+1)+(B)/((x+1)^(2))+(C)/(x-3) then A=

If (x^(2)-10x+13)/((x-1)(x^(2)-5x+6))=(A)/(x-1)+(B)/(x-2)+(C)/(x-3) then write the values of A, B, C in ascending order.

If (3x+2)/((x+1)(2x^(2)+3))=(A)/(x+1)-(Bx+C)/(2x^(2)+3) , then A+B-C=

If (x^(2)-5x+7)/(x-1)^(3)=A/(x-1)+B/(x-1)^(2)+C/(x-1)^(3) " then " A+B-C=

If 1/(x^(4)+x^(2)+1)=(Ax+B)/(x^(2)+x+1)+(Cx+D)/(x^(2)-x+1) " then "C+D=

If (1)/((1+2x)(1-x^(2)))=(A)/(1+2x)+(B)/(1+x)+(C)/(1-x) then assending order of A, B, C.

If (x^(4))/((x-1)(x-2)(x-3))= A.x+B. (1)/((x-1))+C (1)/((x-2))+D. (1)/((x-3))+E , then A+B+C+D+E=