Home
Class 12
MATHS
If (2x^(3)+1)/((x-1)(x+1)(x+2))=A+(B)/(x...

If `(2x^(3)+1)/((x-1)(x+1)(x+2))=A+(B)/(x-1)+(C)/(x+1)+(D)/(x+2)`, then find the value of `A+B+C+D`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{2x^3 + 1}{(x - 1)(x + 1)(x + 2)} = A + \frac{B}{x - 1} + \frac{C}{x + 1} + \frac{D}{x + 2}, \] we will first multiply both sides by the denominator \((x - 1)(x + 1)(x + 2)\) to eliminate the fractions. ### Step 1: Multiply both sides by the denominator \[ 2x^3 + 1 = A(x - 1)(x + 1)(x + 2) + B(x + 1)(x + 2) + C(x - 1)(x + 2) + D(x - 1)(x + 1). \] ### Step 2: Expand the right-hand side Calculating each term: - \(A(x - 1)(x + 1)(x + 2) = A(x^2 - 1)(x + 2) = A(x^3 + 2x^2 - x - 2)\) - \(B(x + 1)(x + 2) = B(x^2 + 3x + 2)\) - \(C(x - 1)(x + 2) = C(x^2 + x - 2)\) - \(D(x - 1)(x + 1) = D(x^2 - 1)\) Combining these, we have: \[ 2x^3 + 1 = Ax^3 + (2A + B + C + D)x^2 + (-A + 3B + C)x + (-2A + 2B - 2C - D). \] ### Step 3: Compare coefficients Now we will compare the coefficients of \(x^3\), \(x^2\), \(x\), and the constant term on both sides. 1. **Coefficient of \(x^3\)**: \[ A = 2. \] 2. **Coefficient of \(x^2\)**: \[ 2A + B + C + D = 0. \] Substituting \(A = 2\): \[ 2(2) + B + C + D = 0 \implies 4 + B + C + D = 0 \implies B + C + D = -4. \] 3. **Coefficient of \(x\)**: \[ -A + 3B + C = 0. \] Substituting \(A = 2\): \[ -2 + 3B + C = 0 \implies 3B + C = 2. \] 4. **Constant term**: \[ -2A + 2B - 2C - D = 1. \] Substituting \(A = 2\): \[ -2(2) + 2B - 2C - D = 1 \implies -4 + 2B - 2C - D = 1 \implies 2B - 2C - D = 5. \] ### Step 4: Solve the system of equations We now have the following system of equations: 1. \(B + C + D = -4\) (Equation 1) 2. \(3B + C = 2\) (Equation 2) 3. \(2B - 2C - D = 5\) (Equation 3) From Equation 2, we can express \(C\) in terms of \(B\): \[ C = 2 - 3B. \] Substituting \(C\) into Equation 1: \[ B + (2 - 3B) + D = -4 \implies -2B + D = -6 \implies D = 2B - 6. \tag{4} \] Now substitute \(C\) and \(D\) from Equations 2 and 4 into Equation 3: \[ 2B - 2(2 - 3B) - (2B - 6) = 5 \implies 2B - 4 + 6B - 2B + 6 = 5 \implies 6B + 2 = 5 \implies 6B = 3 \implies B = \frac{1}{2}. \] Now substitute \(B\) back to find \(C\) and \(D\): \[ C = 2 - 3\left(\frac{1}{2}\right) = 2 - \frac{3}{2} = \frac{1}{2}, \] \[ D = 2\left(\frac{1}{2}\right) - 6 = 1 - 6 = -5. \] ### Step 5: Calculate \(A + B + C + D\) Now we have: - \(A = 2\) - \(B = \frac{1}{2}\) - \(C = \frac{1}{2}\) - \(D = -5\) Thus, \[ A + B + C + D = 2 + \frac{1}{2} + \frac{1}{2} - 5 = 2 + 1 - 5 = -2. \] ### Final Answer The value of \(A + B + C + D\) is \(-2\).
Promotional Banner

Similar Questions

Explore conceptually related problems

If (x^(2)+x+2)/(x^(2)+2x+1)=A+(B)/(x+1)+(C)/((x+1)^(2)) , then find the value of A+B+C .

Resolve into Partial Fractions If (1)/(x^(3)(x+3))=(1)/(Ax) - (1)/(Bx^(2))+(1)/(Cx^(3))-(1)/(D(x+3)) then find the values of A, B, C and D.

x^(3)/((2x-1)(x+2)(x-3))=A+B/(2x-1)+C/(x+2)+D/(x-3) rArr A =

If (x^(4))/((x-1)(x-2)(x-3))= A.x+B. (1)/((x-1))+C (1)/((x-2))+D. (1)/((x-3))+E , then A+B+C+D+E=

If (x^(2)-5x+7)/(x-1)^(3)=A/(x-1)+B/(x-1)^(2)+C/(x-1)^(3) " then " A+B-C=

If (1)/((1+2x)(1-x^(2)))=(A)/(1+2x)+(B)/(1+x)+(C)/(1-x) then assending order of A, B, C.

If (d)/(dx)((1+x^2+x^4)/(1+x+x^2)) = a+bx , find the values of a and b .

If d/(dx)(tan^(-1)(2^(x+1)/(1-4^(x))))=a^(x+1)/(1+b^(x))loga , find the value of a and b.

(3x^(2)+x+1)/((x-1)^(4))=(A)/(x-1)+(B)/((x-1)^(2))+(C)/((x-1)^(3))+(D)/((x-1)^(4)) then A+B-C+D=

If 1/(x^(4)+x^(2)+1)=(Ax+B)/(x^(2)+x+1)+(Cx+D)/(x^(2)-x+1) " then "C+D=